
Practice
Systems for Industry 4.0 and Environment (IoT)

www: https://www.skenz.it/iot

Stefano Scanzio (stefano.scanzio[at]unimib.it)

https://www.skenz.it/iot

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Presentation

Stefano Scanzio

CNR – National Research Council of Italy

Contact:
Email: stefano.scanzio[at]unimib.it

Telegram: https://t.me/zioskenz

www: https://www.skenz.it/ss

(link to courses, CV, publications, theses)

2

Introduction

https://t.me/zioskenz
https://www.skenz.it/ss

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Outline

● MQTT
○ Lightweight message protocol designed for IoT
○ Integrated with [1]

● Wireshark
○ Network protocol analyzer for monitor network traffic

● JSON
○ data interchange format used for structured data representation and exchange
○ Integrated with [2]

● tkinter
○ Python library to design graphical interfaces

● URI
○ A protocol based on string to identify a resource on the internet

[1] https://robot.unipv.it/toolleeo/teaching/docs_iot/message_passing_handout.pdf
[2] https://robot.unipv.it/toolleeo/teaching/docs_iot/rest_api_handout.pdf

3

Arguments

https://robot.unipv.it/toolleeo/teaching/docs_iot/message_passing_handout.pdf
https://robot.unipv.it/toolleeo/teaching/docs_iot/rest_api_handout.pdf

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Outline (2)

● HTTP and HTTPS
○ Protocols that enable data exchange between client and server

● request
○ Python library that simplifies sending HTTP requests

● REST API
○ Web service architecture using HTTP methods for creating, reading, updating, and deleting

resources
○ Integrated with [2]

● flask
○ Lightweight Python web framework for building web applications with flexibility and minimal

setup

[1] https://robot.unipv.it/toolleeo/teaching/docs_iot/message_passing_handout.pdf
[2] https://robot.unipv.it/toolleeo/teaching/docs_iot/rest_api_handout.pdf

4

Arguments

https://robot.unipv.it/toolleeo/teaching/docs_iot/message_passing_handout.pdf
https://robot.unipv.it/toolleeo/teaching/docs_iot/rest_api_handout.pdf

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Paho MQTT

● Paho MQTT is the most popular MQTT client library in the Python
○ Support of different versions: MQTT v5.0, MQTT v3.1.1, and v3.1
○ Open-source
○ Easy-to-use API
○ Actively developed and maintained

● Guide
○ https://pypi.org/project/paho-mqtt/

● Installation
pip3 install paho-mqtt

5

Paho MQTT

https://pypi.org/project/paho-mqtt/

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Paho MQTT Client

How to create a MQTT Client (Client class):

● Create a Client instance
● Connect to a broker (connect*() functions)
● Maintain network traffic flow with the broker (loop*() functions)
● Subscribe to a topic and receive messages (subscribe() function)
● Publish messages to the broker (publish() function)
● Disconnect from the broker (disconnect() function)
● Callbacks used to process events

6

Paho MQTT

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Simple Subscriber

import paho.mqtt.client as mqtt

def on_message(client, userdata, msg):

 print(f"Received `{msg.payload.decode()}`

 from `{msg.topic}` topic")

client = mqtt.Client('demo_unimib_sub')

client.connect('test.mosquitto.org')

client.on_message = on_message

client.subscribe('ax4sg-ggss/#')

client.loop_forever()

7

Paho MQTT

Client name

URL of the broker

Subscribed resources

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Summary of the example

● In the example, the provided Paho MQTT is used to create an MQTT client in
Python.

● The client connects to an MQTT broker.
○ Subscribing to a specific topic.

● The client sets a callback function to process incoming messages.
● Finally, the client enters a loop to continuously receive and process arriving

messages.

8

Paho MQTT

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Simple Publisher

import paho.mqtt.client as mqtt

client = mqtt.Client('demo_unimib_pub')

client.connect('test.mosquitto.org')

client.publish('ax4sg-ggss/temperature', 21.5)

9

Paho MQTT

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wildcards (for topic subscription)

● + (Plus):
○ It represents a single level in a topic
○ Example: "sensor/+/temperature" corresponds to "sensor/room1/temperature" and

"sensor/kitchen/temperature", but not to "sensor/bedroom/humidity".
○ Allows subscribing to groups of topics that share the same structure but differ in a specific

level.
● # (Hash)

○ Represents zero or more levels in a topic (can only be used at the end).
○ Example: "sensor/#" corresponds to "sensor/temperature", "sensor/humidity", but

also "sensor/kitchen/temperature".
○ Allows you to subscribe to all topics starting with a certain prefix.
○ It must be the last character in the topic, and may only be used once in a subscription.

10

Paho MQTT

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark

● Wireshark is a network packet analyzer
○ Captures packets and provides many details
○ Analyzes what happen in a network cable or in a wireless communication

● Resources:
○ https://www.wireshark.org/
○ https://wiki.wireshark.org/

● Why Wireshark? From wireshark.org…
○ Network administrators use it to troubleshoot network problems
○ Network security engineers use it to examine security problems
○ Quality assurance (QA) engineers use it to verify network applications
○ Developers use it to debug protocol implementations
○ People use it to learn network protocol internals

11

Wireshark

https://www.wireshark.org/
https://wiki.wireshark.org/

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark interface

12

Wireshark

Menu

Packet bytes

Packet list

Packet dissection

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark meets MQTT - Subscriber

Execute the subscriber:

python3 00200-mqtt_basic_sub.py

13

Wireshark

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark meets MQTT - Subscriber

Execute the Subscriber:

python3 00200-mqtt_basic_sub.py

14

Wireshark

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark meets MQTT - Connect command

15

Wireshark

If the broker does not receive any packets from the client
within 1.5 times the keepalive interval, it assumes the
client has disconnected and closes the connection.

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark meets MQTT - Publisher

Execute the Publisher:

python3 00100-mqtt_basic_pub.py

16

Wireshark

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark meets MQTT - Publish Message

Message ASCII (character):
32 (‘2’) 31 (‘1’) 2e (‘.’) 35 (‘5’) →”21.5”

17

Wireshark

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

.pcap files

● Data captured by Wireshark can be stored in a .pcap (packet capture) file
○ Originally designed for tcpdump/libpcap
○ Widely used format
○ Contains raw network traffic

● You can download the first example here:
○ https://www.skenz.it/listing/iot/wireshark/MQTT_subscriber.pcap

● Other general examples of captures:
○ https://wiki.wireshark.org/uploads/27707187aeb30df68e70c8fb9d614981/http.cap
○ https://wiki.wireshark.org/SampleCaptures

18

Wireshark

https://www.skenz.it/listing/iot/wireshark/MQTT_subscriber.pcap
https://wiki.wireshark.org/uploads/27707187aeb30df68e70c8fb9d614981/http.cap
https://wiki.wireshark.org/SampleCaptures

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Filters

● Filters permit the selection of specific packets
○ That meet certain search requirements
○ Possible questions about filters in the exam!

● Example applied to
https://www.skenz.it/listing/iot/wireshark/MQTT_subscriber.pcap

19

Wireshark

https://www.skenz.it/listing/iot/wireshark/MQTT_subscriber.pcap

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Filters (2)

● Example applied to
https://wiki.wireshark.org/uploads/27707187aeb30df68e70c8fb9d614981/http.cap

20

Wireshark

https://wiki.wireshark.org/uploads/27707187aeb30df68e70c8fb9d614981/http.cap

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

JSON

● JSON (JavaScript Object Notation) is a lightweight data interchange format
inspired by JavaScript

○ open standard
○ language independent format, but similar to C-like languages (C, C++, C#, Java, Perl, Python,

and JavaScript)
○ human-readable, easy to parse and generate, useful for representing and storing structured

data (and “serialize” them).
■ Lighter and faster than XML

○ specified by RFC 7159 (which obsoletes RFC 4627) and by ECMA-404
○ built-in package called json (import json)
○ https://json.org/

● Guide
○ https://docs.python.org/3/library/json.html

21

JSON

https://json.org/
https://docs.python.org/3/library/json.html

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Type conversion

22

JSON

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

json package

● json.loads(): From JSON string to python dictionary

import json

a = '{ "exams": ["IoT", "OS"], "students": 6000}'

b = json.loads(a)

print(b, type(b))

> {'exams': ['IoT', 'OS'], 'students': 6000} <class ‘dict’>

● json.dumps(): From a python object (e.g., dictionary, list, tuple) to a JSON
string

import json

c = {"name":"Stefano", "age":44}

d = json.dumps(c)

print(type(c), type(d), d)

> <class 'dict'> <class 'str'> {"name": "Stefano", "age": 25}

23

JSON

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

From JSON to XML

● After installing xmltodict using pip3 install xmltodict

import json

import xmltodict

a = '{"root": { "exams": ["IoT", "OS"], "students": 6000}}'

b = json.loads(a)

xml=xmltodict.unparse(b)

print(xml)

> <?xml version="1.0" encoding="utf-8"?>
<root><exams>IoT</exams><exams>OS</exams><students>6000</students></root>

24

JSON

JSON must have only one root

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

From XML to JSON

import json

import xmltodict

c = xmltodict.parse(

"<root><exams>IoT</exams><exams>OS</exams><students>6000</students></root>")

d = json.dumps(c)

print(type(c), type(d), d)

> <class 'dict'> <class 'str'> {"root": {"exams": ["IoT", "OS"], "students":
"6000"}}

25

JSON

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

tkinter

● Tkinter is a module to create graphical interfaces
○ Easy to use
○ Cross platform: Windows, Linux, macOS

● Guide
○ https://docs.python.org/3/library/tkinter.html

● Installation
pip install tk

26

tkinter

https://docs.python.org/3/library/tkinter.html

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

tkinter

● Widget: Graphical User Interface (GUI) elements
○ buttons
○ textboxes
○ labels
○ images

● Windows: container of widgets

27

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Simple window

import tkinter

win = tkinter.Tk() # Instance of a window
win.geometry("320x240")
win.title("Example")
#win.config(background="red")
win.config(background="#1034A6") #Egyptian blue

win.mainloop() # Generate window, and listen for events

28

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Label widget

● Label widget to place text or images
from tkinter import *

win = Tk()
label = Label(win,text="Hello",
 font=("Arial",40,"bold"),
 fg="green",
 bg="black",
 relief=RAISED,
 bd=10)
#label.pack() # Center of row
label.place(x=0,y=0)

win.mainloop()

29

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Button widget

from tkinter import *

count = 0

def on_click():

 global count; count += 1

 print(count)

 win.geometry("320x240")

win = Tk()

button = Button(win,

 text="Click!",

 command=on_click, font=("Comic Sans",30),

 fg="green", activeforeground="green", bg="black", activebackground="black")

button.pack()

win.mainloop()

30

tkinter

Before Click!

After Click!

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Entry widget

from tkinter import *

def send():

 str = txt.get(); print("Hello "+str)

 txt.config(state=DISABLED)

def delete():

 txt.delete(0,END)

win = Tk()

txt = Entry(win,font=("Arial",50)); txt.pack(side=LEFT)

sub_button = Button(win,text="send",command=send); sub_button.pack(side=RIGHT)

del_button = Button(win,text="del",command=delete); del_button.pack(side=RIGHT)

win.mainloop()

31

tkinter Before send

After send

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Other widgets

● Check button: tkinter.Checkbutton()

● Radio button: tkinter.Radiobutton()

● Sliding scale: tkinter.Scale()

● List box: tkinter.Listbox()

32

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Text widget

from tkinter import *

def submit():

 print(text.get(1.0,END)) # From the beginning 1.0 to the end

win = Tk()

text = Text(win,bg="light yellow",fg="purple",

 font=("Arial",20),

 height=8,width=20,

 padx=20,pady=20)

text.pack()

button=Button(win,text="Submit",command=submit)

button.pack()

win.mainloop()

33

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Listbox widget

from tkinter import *

win = Tk()

listbox = Listbox(win, bg="#f7ffde", width=20, height=5)

listbox.pack()

listbox.insert(1,"Pizza"); listbox.insert(2,"Rice")

listbox.insert(3,"Salad"); listbox.insert(4,"Pasta")

listbox.insert(5,"Bread"); listbox.insert(6,"Fruit")

listbox.insert(END,"Yogurt")

listbox.yview_moveto(1.0)

listbox.config(bg="light green")

listbox.yview_moveto(0.0)

listbox.config(bg="light blue")

win.mainloop()

34

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Menu bar
from tkinter import *

def open_file(): print("Open file code")

win = Tk()

menubar = Menu(win)

win.config(menu=menubar)

file_menu = Menu(menubar,tearoff=0)

menubar.add_cascade(label="File",menu=file_menu)

file_menu.add_command(label="Open",command=open_file)

file_menu.add_command(label="Save")

file_menu.add_separator()

file_menu.add_command(label="Exit")

edit_menu = Menu(menubar,tearoff=0)

menubar.add_cascade(label="Edit",menu=edit_menu)

win.mainloop()

35

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Why Frame?

from tkinter import *

win = Tk()

buttonN=Button(win,text="N",width=3,height=2)

buttonS=Button(win,text="S",width=3,height=2)

buttonE=Button(win,text="E",width=3,height=2)

buttonW=Button(win,text="W",width=3,height=2)

buttonN.pack(side=TOP);

buttonS.pack(side=BOTTOM);

buttonE.pack(side=LEFT);

buttonW.pack(side=RIGHT);

win.mainloop()

36

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Frame

from tkinter import *

win = Tk()

frame=Frame(win)

frame.pack(side=LEFT)

#frame.pack(anchor=NW)

#frame.place(x=30,y=30)

buttonN=Button(frame,text="N",width=3,height=2)

buttonS=Button(frame,text="S",width=3,height=2)

buttonE=Button(frame,text="E",width=3,height=2)

buttonW=Button(frame,text="W",width=3,height=2)

buttonN.pack(side=TOP);

buttonS.pack(side=BOTTOM);

buttonE.pack(side=LEFT);

buttonW.pack(side=RIGHT);

win.mainloop()

37

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Tabs (Notebook widget)

from tkinter import *

from tkinter import ttk

win = Tk()

notebook = ttk.Notebook(win) # Widget to manage a collection of widget and displays

tab1 = Frame(notebook) # New Frame for tab1

tab2 = Frame(notebook) # New Frame for tab2

notebook.add(tab1,text="Tab 1")

notebook.add(tab2,text="Tab 2")

notebook.pack(expand=True,fill="both") # Fill all space

Label(tab1,text="Hello from tab1",width=40,heigh=20).pack()

Label(tab2,text="Hello from tab2",width=40,heigh=20).pack()

win.mainloop()

38

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Window .protocol() method

from tkinter import *

win = Tk()

def on_closing():

 print("window closed!")

 win.quit()

win.protocol("WM_DELETE_WINDOW", on_closing)

WM_TAKE_FOCUS Other window protocol, triggered by focus

win.mainloop()

39

tkinter

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Widget .bind() method

● It binds a specified event occurred on the widget to a handler
from tkinter import *

win = Tk()

def on_message(event=None):
 print(my_msg.get())

my_msg = StringVar()
my_msg.set("message")
entry_field = Entry(win, textvariable=my_msg)
entry_field.bind("<Return>", on_message)
entry_field.pack()

win.mainloop()

40

tkinter

Other events:
● <Button-1>: Left mouse button click
● <Button-3>: Right mouse button click
● <Enter>: Mouse cursor enters the widget
● <KeyPress>: Any key is pressed
● <KeyRelease>: Any key is released
● <Tab>: Tab key is pressed
● <FocusIn>: Widget gains focus
● <FocusOut>: Widget loses focus
● <Configure>: Widget is resized or moved

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

URI

● Universal Resource Identifiers (URIs) are a syntax used to define the
names and position of objects (resources) on the Internet (but not only).

○ formalization started in 1994
○ T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic

Syntax, 2005. RFC3986. WWW: https://datatracker.ietf.org/doc/html/rfc3986
○ Define a mechanism and syntax for unified access to data resources (encoded as strings).

● WWW
○ Use URI to identify resources reachable through different protocols (e.g., HTTP, FTP, Telnet,

etc.)
○ Use of URI in different context, to identify:

■ an image
■ an HTML page
■ a hyperlink
■ an Excel document
■ etc.

41

URI

https://datatracker.ietf.org/doc/html/rfc3986

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

URI, URL, URN

42

URI

URI

URN URL

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

URI, URL, URN

● Uniform Resource Identifier (URI): mailto:myemail@skenz.it
○ mailto:myemail@skenz.it (specifies a mail address) or tel:+393001234567 (specify a

phone number)
○ but also https://www.skenz.it/ss

● Uniform Resource Locator (URL): https://www.skenz.it/ss
○ It is a type of URI that specifies the access method and the location
○ For example: https://www.skenz.it/ss/theses tells that the resource is a webpage that

can be accessed with the https protocol in the web server with address skenz.it, and it can
be identified by /ss/theses

● Uniform Resource Name (URN): urn:isbn:978-3659204821
○ Designed to uniquely identify a resource based on its name rather than its physical location
○ It is a URI that persistently identifies the resource, but it does not tell where or how to

find it
○ For example: urn:isbn:978-3659204821 identifies that the resource is a book with a

specific ISBN number

43

URI

mailto:myemail@skenz.it
mailto:info@example.com
https://www.skenz.it/ss
https://skenz.it/ss
https://www.skenz.it/ss/theses

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

URL and URN

In other words:

● URL is an address that can be used immediately to access the resource
○ URLs contain all the information needed to access the information but are not robust to

changes in the access mechanism (e.g., changing a directory)
● URN is a stable and definitive name of a resource but give no information on

how to access it
○ urn:isbn:978-3659204821 (Reference to the book “Speeding-up Artificial Neural

Networks”)
○ urn:ietf:rfc:3986 (Reference to the IETF's RFC 3986)
○ urn:uuid:6e8bc430-9c3a-11d9-9669-0800200c9a66 (Reference to UUID, version 1)

■ Universally Unique Identifier (UUID) is a label coded in 128 bits
■ Version 1: concatenates a MAC address (48 bits) and a timestamp (60 bits)

○ urn:isan:0000-0000-2CEA-0000-1-0000-0000-Y (Reference to a film)

44

URI

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

URI characteristics

URIs are:

● Extensible: new schemas can be added (to enable new protocols)

● Comprehensive: all existing names are encodable and new protocols can be
included

● Printable: URIs can be expressed in 7-bit ASCII encoding

45

URI

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Syntax

● High level view
scheme:specific_part
● scheme

○ protocol (registered string)
○ specifies how to encode the specific_part

● More detailed view
scheme:[//authority]path[?query][#fragment]
(authority = [userinfo@]host[:port])

46

URI

Author: Alhadis@wikipedia (CC BY-SA 4.0)

https://it.wikipedia.org/wiki/Uniform_Resource_Identifier#/media/File:URI_syntax_diagram.svg
https://creativecommons.org/licenses/by-sa/4.0

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

scheme:[//authority]path[?query][#fragment]

● The scheme can restrict the semantic and the syntax of the identifiers
○ case-insensitive (lowercase in practice)

● The path permits to define a hierarchy
○ each element separated by “/”

● Examples:

prot://example.net:123/class/animal?name=lion#nose

urn:example:animal:lion:nose

Syntax (2)

47

URI

scheme authority path query fragment

scheme path

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

● Again, a URL is (a subset of) a URIs

● The query
○ Preceded by a “?” (question mark)
○ Assign values to an attributes/keys

■ “=” (equal) used to pair an attribute with a value (attribute=value)
■ “&” (ampersand) to separate pairs (attibute1=value1&attribute2=value2)

○ Used to transfer data to a server (e.g., derived by a webform)
● URL has a limited length

○ e.g., from 2 KB to 8 KB
○ URL too long -> HTTP status code: 414 Request-URI Too Long

https://www.skenz.it/exam/question?name=IoT&order=random#top

URL Syntax

48

URI

scheme authority path query fragment

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

● Again, a URL is (a subset of) a URIs

● The fragment
○ Refer a particular element within the resource
○ For example, https://www.skenz.it/article#conclusion

■ Points to the conclusion element within the article

https://www.skenz.it/exam/question?name=IoT&order=random#top

URL Syntax (2)

49

URI

scheme authority path query fragment

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

URI encoding

Characters in URI are unreserved, reserved, and escaped.

● Unreserved characters
○ Uppercase, lowercase, and digits (included in US-ASCII)
○ Punctuation: - _ . ! ~ * ‘ ()

● Reserved characters
○ Have specific function in URI: ; / ? : @ & = + $,
○ Escape used to identify these characters
○ Example:

■ \; is the character “;”
■ \\ is the character “\”

50

URI

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

URI encoding (2)

● Escaped characters
○ All others

■ non US-ASCII, control characters, spaces, other { } | \ ^ [] ` < > # % “
○ For ASCII: %XX

■ XX two digits hexadecimal number representing the character
■ “ “ space character 3210=2016 → %20 (in URI)

○ In UTF-8: %XX(XX)?(XX)?(XX)?
■ UTF-8 has a variable length of 2, 4, 6, or 8 digits hexadecimal numbers
■ € is coded as %E2%82%AC (in URI)

51

URI

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Connection between URI and HTTP/HTTPS

● host: IP or DNS address of the resource
● port: where the server is listening

○ Default: 80 for HTTP, 443 for HTTPS
● path: hierarchic path name to identify the resource
● query: the object of research on a specific resource
● fragment: identification of a sub-part of the object (the server ignores this part

because the return of sub-parts is the responsibility of the client)

52

HTTP

http://host[:port]/path[?query][#fragment]
https://host[:port]/path[?query][#fragment]

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Hypertext Transfer Protocol (HTTP)

● Hypertext Transfer Protocol (HTTP)
○ Application layer protocol
○ For the exchange of documents

● Characteristics
○ Client-server

■ client activate the connection and request services
■ server accept the connection and provides the resource

● possibly identifies the client
○ Generic

■ independent of the format in which the resources are transmitted
○ Stateless

■ The server does not need to maintain information that persists between one connection
and the next

53

HTTP(S)

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Versions

● HTTP/0.9 (1991): Easy client-server protocol only for request HTML
resources (old version)

● HTTP/1.0 (1996, RFC 1945): protocol becomes generic and stateless (old
version)

● HTTP/1.1 (1997, RFC 2068 and RFC 2616): reuse of a TCP connection to
request multiple resources

● HTTP/2 (2015, RFC 7540): more efficient and push capability to send
resources from the server to the client

● HTTP/3 (2022, RFC 9114): improve of HTTP/2 to support QUIC+UDP

54

HTTP(S)

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

HTTP request

● Method: is the requested action
○ GET, HEAD, POST, PUT, POST
○ OPTIONS, DELETE, TRACE, CONNECT (less common, not described here)

● URI: identifies the resource
● Version: HTTP1.0 or HTTP/1.1
● CR+LF: CR (Carriage Return, ASCII 13) and LF (Line Feed, ASCII 10)
● Header: are lines describing the resource

○ key: value coules
● Body: the message/resource in the MIME format

55

HTTP(S)

Method URI Version CR+LF
[Header]*
CR+LF
Body

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Example of an HTTP request

GET /beta.html HTTP/1.1
Referer: http://www.alpha.com/alpha.html
Connection: Keep-Alive
User-Agent: Mozilla/4.61 (Macintosh; I; PPC)
Host: www.alpha.com:80
Accept: image/gif, image/jpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

56

HTTP(S)

http://www.alpha.com/alpha.html

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Common HTTP request methods

● GET
○ used to request a resource from the server

● HEAD
○ similar to GET
○ server replies only with headers, but body is not included
○ Used to check: validity and accessibility of URI, coherence of the cache

● DELETE
○ Used to remove information

57

HTTP(S)

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Common HTTP request methods (2)

● PUT
○ to transmit information from the client to the server (usually to replace existing resources)
○ the argument is a pre-existing resource to which information is added/modified
○ idempotent: multiple identical requests should have the same effect as a single request (no

risk to create the same resource more than once)

● POST
○ like PUT, to transmit information from the client to the server (usually to create new resources)
○ not idempotent: sending the same POST request multiple times might result in different

outcomes

58

HTTP(S)

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Headers

● Standardized in RFC 822
● Types

○ general for the transmission, referred to the entity transmitted, to the request made, or to the
response generated

● Examples:
○ Date: date and hour of the transmission
○ MIME-Version: always 1.0
○ Transfer-Encoding: The format used in the transmission
○ Cache-Control: cache mechanism requested or suggested
○ Connection: specifies if connection should be maintained after the current transaction
○ Content-Type: the MIME type of the body
○ Content-Length: length in bytes of the body
○ Expires: a date after which the resource is considered no longer valid (for cache)

59

HTTP(S)

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Headers (2)

● Examples:
○ Last-Modified: date and hour of last modification of the resource
○ User-Agent: client that originates the request
○ Host: domain name and port to which the connection is made

■ The URI in the request is only the local part
■ If the server contains more than one website, the “host:” header permits to

distinguish the website to which the request refers

60

HTTP(S)

GET /ss HTTP/1.1
...
Host: www.skenz.it:80

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Example of an HTTP response

GET /index.html HTTP/1.1
Host: www.cs.unibo.it:80

HTTP/1.1 200 OK
Date: Fri, 26 Nov 1999 11:46:53 GMT
Server: Apache/1.3.3 (Unix)
Last-Modified: Mon, 12 Jul 1999 12:55:37 GMT
Accept-Ranges: bytes
Content-Length: 3357
Content-Type: text/html
<HTML> …. </HTML>

61

HTTP(S)

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Status line

● Status line is the first line of the response message
○ HTTP/1.1 200 OK (in the example of the previous slide)

● Status number code
○ First digit identify the class of response

■ 1xx: Informational - not used
■ 2xx: Success - requested action correctly accepted
■ 3xx: Redirection - further action required (to complete the request)
■ 4xx: Client error - request performed by the client is invalid
■ 5xx: Server error - server cannot execute the client request

○ Examples of common status codes

62

HTTP(S)

200 OK 401 Unauthorized

301 Resource moved permanently 403 Forbidden

302 Resource moved temporarily 404 Not found

400 Bad request 500 Internal Server Error

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Hypertext Transfer Protocol Secure (HTTPS)

● Extension of the HTTP protocol
● HTTP encrypted with Transport Layer Security (TLS)

63

HTTP(S)

HTTP Server
my_password

clear

HTTPS Server
%&**-!e£&?^

encrypted

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Message exchanges

64

HTTP(S)
CLIENT SERVER

TCP SYN

TPC SYN+ACK

TCP ACK

TCP Handshake

CLIENT Hello

SERVER Hello

Certificate

SERVER Hello Done

a) What TLS version
can support
b) Which algorithms
supported for
encryption

Which TLS version
and encryption
algorithm

Public key
(asymmetric
encryption)

At the end of this step, they choose the encryption
algorithm (and the server communicate its key)

Connection established
Certificate Check

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Message exchanges

65

HTTP(S)
CLIENT SERVER

CLIENT Key ExchangeKey exchange
(RSA as example, because it is easy)

Finished

Encrypted with the public
key of the SERVER

Data transmission

Change Cipher Spec.
Finished

Change Cipher Spec.

Session key

Encrypted
Session key

Encrypted
Session key

Session key

Decrypted with the private
key of the SERVER

Encrypted data

Encrypted data
(Symmetric encryption)

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

requests

● Requests is a simple (but elegant) HTTP library
○ Send HTTP/1.1 requests extremely easily
○ No need to manually add query strings to URL
○ No need to form-encode your POST data

● Guide
○ https://pypi.org/project/requests/
○ https://requests.readthedocs.io/en/latest/

● Installation
pip install requests

66

HTTP

https://pypi.org/project/requests/
https://requests.readthedocs.io/en/latest/

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

math.js

● math.js is web service that
○ allow evaluation of mathematical expression
○ using GET or POST requests

● Guide
○ https://api.mathjs.org/

● GET (Try it by clicking on the URL)
○ https://api.mathjs.org/v4/?expr=2*(7-3) (2*(7-3) = 8)
○ https://api.mathjs.org/v4/?expr=2%2F3&precision=3 (2/3 with precision 3 significant digits = 0.667)

● POST
○ Request:

■ content-type: application/json
■ {"expr":["a = 2 + 3", "5 * 2"], "precision": 3}

○ Response:
■ {"result":["5","10"], "error":null}

67

HTTP

https://api.mathjs.org/
https://api.mathjs.org/v4/?expr=2*(7-3)
https://api.mathjs.org/v4/?expr=2%2F3&precision=3

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

requests in practice
● Request a generic webpage (GET method)

r = requests.get("https://www.skenz.it/ss")
print(r.text)
print(r.headers)
print(r.status_code)

● math.js GET request
r = requests.get("http://api.mathjs.org/v4/", params={"expr": "3*2"})
print(r.text)

● math.js POST request
r = requests.post("http://api.mathjs.org/v4/",
data='{"expr":["3*2"]}',headers={'Content-Type': 'application/json'})
print(r.text)

68

HTTP

Output: 6

Output: {"result":["6"],"error":null}

Output: HTML of the webpage

HTTP header

200 (corresponding to OK)

https://www.skenz.it/ss

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark GET request

● GET: r = requests.get("http://api.mathjs.org/v4/" , params={"expr":
"3*2"})

69

HTTP

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark POST request

● POST: r = requests.post("http://api.mathjs.org/v4/",
data='{"expr":["3*2"]}',headers={'Content-Type': 'application/json'})

70

HTTP

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

REST API

A Rest API (also called RESTful API or RESTful web API), is basically an
architectural style for an application program interface (API), that uses HTTP
requests to access and use data.

An API for a website is code that allows two software programs to communicate
with each other. These offered services are:

● Scalable
● Stateless
● Easy to maintain

71

REST API

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Purposes of REST API

The purposes of REST API are:

● Providing a standardized way to for clients to interact with server resources
over the internet.

● Enables the creation of scalable and maintainable web services that can
be easily integrated into different applications and platforms.

● REST APIs are widely used in mobile app and web development, for
building distributed systems and microservices architectures.

72

REST API

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Resources in REST API

In REST API resources have the following characteristics:

● Definition: Everything in a RESTful API is a resource, which can be accessed
using a unique Uniform Resource Identifier (URI).

● Example: Resources can represent real-world objects such as users,
products, documents, etc.

● URI Structure: Each resource is identified by a unique URI, which serves as
its address on the web.

73

REST API

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Status codes in REST API

REST API uses HTTP status codes:

● Purpose: HTTP codes indicates the success or failure of a request.

● Common status codes:
○ 200: OK - Request succeeded.
○ 201: Created - Resource was successfully created.
○ 404: Not Found - Resource not found on the server.
○ 500: Internal Server Error - Server encountered an unexpected condition.

● Response: servers return appropriate status codes along with responses to
clients about the outcome of their requests.

74

REST API

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

REST APIs Commands

REST APIs uses several commands to manage resources:

● GET: Retrieve a resource or a collection of resources from the server.
● POST: Create a new resource on the server.
● PUT: Update an existing resource on the server or create a new one if it does

not exist.
● DELETE: Delete a resource from the server.

● Example Usage: Clients use these HTTP methods to perform actions on
server resources.

75

REST API

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Data Formats in REST API

Most common data formats in REST API is:

● application/json: Lightweight data interchange format, easy to read, write,
parse and generate.

● application/xml: Markup language similar to HTML, commonly used for data
exchange between web services.

● application/x-wbe+xml
● application/x-www-form-urlencoded
● multipart/form-data

76

REST API

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Examples of REST API

Example 1: User Resource

● Endpoint: ‘/api/users’
● HTTP Methods:

○ GET ‘/api/users’: Retrieve all users.
○ POST ‘/api/users’: Create a new user.

Example 2: Specific User Resource

● Endpoint: ‘/api/users/{id}’
● HTTP Methods:

○ GET ‘/api/users/{id}’: Retrieve a specific user.
○ PUT ‘/api/users/{id}’: Update a specific user.
○ DELETE ‘/api/users/{id}’: Delete a specific user.

77

REST API

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Flask

● Flask is a lightweight and flexible web framework for Python.
○ Open-source
○ Easy-to-use API
○ Actively developed and maintained
○ Flexible and customizable
○ Ideal for building up to medium-size web applications
○ Extensive documentation and active community support
○ Usable to easily create RESTful API

● Guide
○ https://flask.palletsprojects.com/en/3.0.x/

● Installation
pip install Flask

78

Flask

https://flask.palletsprojects.com/en/3.0.x/

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Flask components

Flask main components are:

● Routes: URL to which the application responds
● Templates: mix of HTML and placeholders to generate web pages dynamically
● Requests Handling: python code that handle incoming HTTP requests
● Extensions: additional packages or libraries that provide extra functionality to

Flask
● Configuration: setting up variables for Flask configuration

● Error Handling: handling errors that occur during the request-response cycle.

79

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Routes

Basically, Routes map URLs. Routing defines the URLs that your application
responds to.

● Routes in Flask define the URLs at which your application's functions (view
functions) can be accessed.

● ‘@app.route()’ decorator, defines a new route, where ‘app’ is the Flask
application instance.

● Routes can include dynamic parts, specified within ‘<>’, allowing for
variable data to be passed to the view function.

80

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Route example

from flask import Flask

app = Flask(__name__)

@app.route('/<name>')

def index(name):

 return 'Hello, '+str(name)

if __name__ == '__main__':

 app.run()

81

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Templates

Templates are basically HTML files that separate the presentation layer from the Python
code that manages the application.

● Flask uses the Jinja2 template engine, which is a modern and widely used templating
engine for Python.
○ Documentation: https://jinja.palletsprojects.com/en/3.1.x/

● Templates increases the dynamism of the code by inserting data into placeholders
and looping over data structures.

● In Flask, template syntax uses double curly braces {{ }} for expressions and {% %}
for control structures.

82

Flask

https://jinja.palletsprojects.com/en/3.1.x/

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Template example

<!DOCTYPE html>

<html>

<head>

 <title>{{ title }}</title>

</head>

<body>

 <h1>Hello, {{ name }}! </h1>

 {% for item in items %}

 {{ item }}

 {% endfor %}

</body>

</html>

83

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Transforming a template into the corresponding HTML

‘index.html’ template:
<!DOCTYPE html>
<html lang="en">
<head>
 <title>{{ title }}</title>
</head>
<body>
 <h1>Hello, {{ name }}!</h1>
 <p>Welcome to our website!</p>
</body>
</html>

two placeholders: {{title}}, {{name}} → will be replaced with actual data
when rendered.

● make sure your index.html template file is located inside a directory named templates
in the same directory as your Flask application file

84

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Transforming a template into the corresponding HTML

Flask route that renders the previous template:
from flask import Flask, render_template # import Flask class and the render_template function.

app = Flask(__name__)

@app.route('/<name>')

def index(name):

 # defining values

 title = "Welcome to My Website"

 return render_template('index.html', title=title, name=name)

if __name__ == '__main__':

 app.run(debug=True)

When you run this Flask application and navigate to the /stefano URL, Flask will render
the template with the provided data, resulting in an HTML page where {{title}} and
{{name}} is replaced with "Welcome to My Website" and “stefano" respectively.

85

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Request Handling

Flask provides user-friendly/simple methods to handle incoming requests and access
request data:

● The ‘request’ object allows you to access data sent with the request, such as form
data, query parameters, and file uploads.

● ‘request.method’ used to determine the HTTP method used (GET, POST, …).
● ‘request.form’: returns a dictionary-like object containing form data submitted with a

POST request.
● ‘request.args’: returns a dictionary-like object containing the query parameters in the

URL.
● ‘request.headers’: returns a dictionary-like object containing the request headers.

86

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Request Handling example

from flask import request

@app.route('/login', methods=['GET', 'POST'])

def login():

 if request.method == 'POST':

 username = request.form['username']

 password = request.form['password']

 # Validate username and password

 else:

 return render_template('login.html')

87

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Extensions

Extensions in Flask are a third-party packages offering various services and
providing additional functions, such as:

● database integration
● authentication and authorization
● form validation
● caching
● email sending

88

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Example RESTful

● Download the example: https://www.skenz.it/listing/iot/examples/01300-04-webservice_book.py
from flask import Flask, jsonify, request

Generation of a Flask instance

app = Flask(__name__)

Sample data (you can have a database)

books = [

 {"id": 1, "title": "Narcis", "author": "John Doe"},

 {"id": 2, "title": "The Glass Bead Game", "author": "Hermann Hesse"},

]

if __name__ == '__main__':

 app.run()

89

Flask

https://www.skenz.it/listing/iot/examples/01300-04-webservice_book.py

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Example RESTful - GET

Route to get all books

@app.route('/api/books', methods=['GET'])

def get_books():

 return jsonify(books)

90

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Example RESTful - GET (2)
Route to get a specific book by book_id

@app.route('/api/books/<int:book_id>', methods=['GET'])

def get_book(book_id):

 # Search for the book with the given book_id

 for book in books:

 if book['id'] == book_id:

 return jsonify(book), 200

 # If no book found with the given book_id, return an error message

 return jsonify({"error": "Book not found"}), 404

91

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Example RESTful - POST

Route to add a new book

@app.route('/api/books', methods=['POST'])

def add_book():

 data = request.json

 new_book = {"id": len(books) + 1, "title": data['title'], "author": data['author']}

 books.append(new_book)

 return jsonify(new_book), 201

92

flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark

● After the execution of the following command:
○ curl -X POST -H "Content-Type: application/json" -d '{"title": "The Glass Bead Game",

"author":"Hermann Hesse"}' http://127.0.0.1:5000/api/books (POST)
○ curl http://127.0.0.1:5000/api/books/3 (GET)

● Download the Wireshark log:
○ https://www.skenz.it/listing/iot/wireshark/FLASK_POST_GET.pcap

93

Flask

http://127.0.0.1:5000/api/books
http://127.0.0.1:5000/api/books/3
https://www.skenz.it/listing/iot/wireshark/FLASK_POST_GET.pcap

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark: POST

94

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark: Response

95

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Wireshark: GET

96

Flask

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Thank you !!!

97

Futuristic IoT device…

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

sudo apt install mosquitto

sudo /etc/init.d/mosquitto stop

sudo /etc/init.d/mosquitto start

sudo /etc/init.d/mosquitto restart

sudo systemctl restart mosquitto

/etc/mosquitto/mosquitto.conf

98

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Schedule

● Week 1: Introduction to python
● Week 2: Python advanced (a)
● Week 3:

○ Python advanced (b)
○ Message passing protocol (01-message_passing_handout.pdf)

● Week 4:
○ Paho MQTT in python

■ First examples about Paho MQTT (00100, 00200, 00300, 00400)
○ Wireshark
○ tkinter

■ MQTT chat with graphical interface (00600)

99

Introduction

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT)

Schedule (2)

● Week 5:
○ REST API and Data Formats (02-rest_api_handout.pdf)
○ JSON (example 00500)
○ URI
○ HTTP/HTTPS
○ request (example 00800)

● Week 6:
○ Example of MQTT services (00900, 01000, 01100)
○ flask
○ Web services (examples 01200, 01400)
○ If time something about Linux

100

Introduction

stefano.scanzio[at]unimib.it Systems for Industry 4.0 and Environment (IoT) 101

