Data formats RESTful services
0000000 0000000000000 00000000000000000000

REST API and Data Formats J

Tullio Facchinetti
<tullio.facchinetti@Qunipv.it>

24 maggio 2023

http://robot.unipv.it/toolleeo

Data formats

RESTful services
9000000 000000000000000000000000000000000
0AR
—_
~ -
bevA nQTT DEVY
CoRP

The two currently most widely adopted data formats:
@ XML - Extensible Markup Language
@ JSON - JavaScript Object Notation

Origin:

- Markup language proposed by the World Wide Web
Consortium in 1998.

0— Data interchange originally specified by Douglas

Crockford originally in the early 2000s to be used with
Javascript. =

Data formats
0@00000

Examples

| ¢

1

v'(update 2023-03-03 0pda\:e>
<stt -
student>
0 <lastName>Doe</lastName>
<agej184/age>
</stude
<student>
<lastName>Smith</lastName>
4 <age>22</age>
</student>
<student>
<lastName>Jones</lastName>
2 <age>20</age>
</student>
</students>

Line breaks, indentation and spacing are for human readability.

RESTful services

000000000000000000000000000000000

YV

{
"update'|: J'2023-03-03",
Tdents e
{

"lastName": "Doe",
o "age": 18
},
"lastName": "Smith",
A "age": 22
},
{
"lastName": "Jones",
"age": 20
o

Data formats RESTful services
000000 0000000000000 00000000000000000000

Characteristics of XML

L Abvudonby num="3">

e Tree data structure.
=

e Supports attributes to elements.
—Ny

mVahdann through an add|t|ona’ XML schema XSD—)hat

defines the necessary metadata for interpreting.

Mo Supports comments.
Me Supports namespaces.
(| ® Supports complex data types (images, audio, etc.).

e Several file formats are based on XML (e.g., SVG, Open XML
- docx, xIsx, pptx, OpenDocument - ods, odt, odp).

—

e Verbose. I‘:_L‘BQ@OFP(CE-

Data formats RESTful services
000e000 0000000000000 00000000000000000000

Characteristics of JSON

hb’lt: D Co\fmmmr

File format based on and Gaps. >

o

e Data structures directly mapped on programming language
types (e.g., Javascript, Python).

— ——

e Support for primitive types such as strings, numbers, arrays,
boolean and null.

e Fast and easy to parse. -

e (Relatively) Compact. - |

Data formats RESTful services
0000800 0000000000000 00000000000000000000

Comparison

XML JSON
Human readable — @ @

Speed ©
Size ®) &)
Comments @

&
UTF support &)
Array support [[‘

©

OIc|o ©
©

Data types

Namespace support

In general{ XML|is adequate to more articulated and complex data
structures, whiIeJ JSON fworks better for simpler and faster data
N

exchange (e.g., through API).

Data formats RESTful services
0000080 0000000000000 00000000000000000000

Data structure in JSONS

JSON is based on two fundamental data structure:

e |List] like arrays but with variable size and heterogeneous types

e (Map\or hash map, or dictionary): key-value association

Nesting

e Lists can contain maps as elements

e The value of a map can be a list

Sorting of elements
e List: based on the position of appearance in the list
e Map: not sorted

Access to elements V
e List: by index (e.g. mylist[0])
e Map: by key (e.g. mymapp["Facchinetti"])

Data formats
000000e

Example

Q9
[pdate |: {12023-03-03"
f”students

"lastName":

"age":‘i’

{
1 "lastName": "Smith",
"age": 22
},
{
"lastName": "Jones",
2 "age": 20
}

RESTful services
000000000000000000000000000000000

Let's assume that the structure is
addressed by the variable data in a
Python program.

data is a map containing two keys:
update and students.
data["update"] is a string
representing a date.
data["students"] is a list
containing 3 maps.
data["students"] [0] is the first
map in the list.

data(%judents"] [0] ["age"] is the
8.

value

Data formats RESTful services
0000000 ©000000000000000O00OO0OO0O0O00O0000

RESTful services

e REST: acronym for REpresentational State Transfer.
e Architectural style for distributed hypermedia systems.

e Firtly introduced by| Roy Fielding\in his dissertation (2000).

A Web API (or Web Service) conforming to the REST
architectural style is a REST API

Data formats RESTful services
0000000 0®00000000000000O0OOO0OO0OOOO0OO000
>

4REST principles] Uniform interface (1@

¢ ldentification of resources: The interface must uniquely
identify each resource involved in the interaction between the
client and the server.

e Manipulation of resources through representations: The
resources should have uniform representations in the server
response; clients use these representations to modify the
resources state in the server.

e Self-descriptive messages: Each resource representation
should carry enotigh information to describe how to process
the message.

e Hypermedia as the engine_of application state: The client
should have only the initial URI pf the application; the client
application should dynamically drive all other resources and
interactions with the use of hyperlinks.

RESTful services

Data formats
00@000000000000000000000000000000

0000000

REST principles:(2/6)

PARADGN . nqmest [Aeqomae

e Separation of concerns between the user interface concerns
el (5

; h
Ive inependentl;f\ P

| e Improvement of the portability of the user interface across

multiple platforms
e Improvement of the scalability by simplifying the server
components.

While the client and the server evolve, we have to make sure
that the interface/contract between the client and the server -
i.e., the API - does not change (break)

Data formats RESTful services
0000000 000800000000000000000000000000000

REST principles:(3/6)

DOES NOT STIRE ANMY (VFOR MaTION
AgoutT THe SESSION (Is STORED IV

e Statelegsness requires that each request from the client to THE
the) must contain all of the necessary information to cue NT)
undErstand and complete the request.

e The server cannot take advantage of any previously stored
context information on the server.

e For this reason, th< cIienﬁappIication must entirely keep the

Data formats RESTful services
0000000 0000800000000 00000000000000000000

REST principles.\ Cacheabla (4/6)

Aen,

Boae CAN nome Afe ddamk cadhe

e A response should implicitly or explicitly label itself as
cacheable or non-cacheable.

e If the response is cacheable, the client application gets the
right to reuse the same (cached) response data for equivalent
requests and a specified period.

Data formats RESTful services
0000000 00000@000000000000000000000000000

REST principles ; (5/6)

e An architecture to be composed of hierarchical layers by
constraining component behavior.

e In a layered system, each component cannot see beyond the
immediate layer they are interacting with.

TS

Data formats RESTful services
0000008000000 00000000000000000000

0000000

REST principles: Code on Demand (Optional) (6/6)
SERER CLievt SorSogh
B AN, d0wp
|[<tac), ——¢
ounctionalities can be extended by downloading and

gcuting code in the form of applets or scripts.

e Servers can provide part of features delivered to the client in
the form of code, and the client only needs to execute the

code.

Clients are simplified since it reduces the number of features
that are required to be pre-implemented

RESTful services

Data formats
0000000@00000000000OO0OO0O0O00O0000

0000000

%’J\"‘W
e A resource can be any information that can be named (from
Roy Fielding's dissertation) - —

e Alternatively: A resource is anything that’s important enough
to be referenced as a thing in itself.

A resource is an abstraction of information
managed by a REST API

Data formats RESTful services
0000000 00000000e000000000000000000000000

Example of resources

Examples of resources:
e Version 1.0.3 of the software release
e The latest version of the software release
e The first weblog entry for October 24, 2006
e A road map of Little Rock, Arkansas
e Some information about jellyfish
e A directory of resources pertaining to jellyfish
e The next prime number after 1024
e The next five prime numbers after 1024

e The sales numbers for‘ Q4200§)

A list of the open b@t‘s in the bug database

(Source: L. Richardson, S. Ruby, “RESTful Web Services”, O'Reilly Media, 2007.

Data formats RESTful services
0000000 00000000 0@000000000O00O00O00O0000

Resource representation

The state of the resource, at any particular time, is known as

the resource representation
—

The representation of a resource consists of:
A) e The data’ 9 EYA)
‘Z] e The metadata describing the data. °C_
—3) e The hypermedia links that can help the clients in transition to
the next desired state.

Data formats RESTful services
0000000 0000000000000 0000000000000000000

Characteristics of resources: Identifiers (1/5)
Identifiers are used to identify each resource involved in the
interactions between the client and the server components.
Resources can be singletons or collections.

Examples:
e student is a singleton resource 1 IsThwvee
SRt

o studenﬁs’is a collection resource (notice the plural)

Identifiers should refer to a resource that is a{thing (noun)
instead of referring to an action (ver

Data formats RESTful services
0000000 0000000000000 00000O00O00O0000000

Characteristics of resources: URI (2/5)

Resources are represented and addressd using Uniform Resource

Identifiers (URLs).

Examples:

-> o https://api.mydomain.com/students
- https://api.mydomain. com/students/P

Data formats RESTful services
0000000 0000000000000 00000O00O00O00O0000

Characteristics of resources: URI (2/5)

Guidelines

Use lowercase letters

© /MY-FOLDER/MY-DOC

© /My-Folder/my-doc
—> © /my-folder/my-doc

Separate multiple words

© /studentmanagement/managedstudents
) /studem@mnagement/managed—students

Do not use underscores
© /studen@anagement/managed_students
— © /student-management/managed-students

© /student-management/managed-student
—5 @ /student-management/managed-students

Do not use trailing forward slash (/) in UR@

Data formats RESTful services
0000000 0000000000000 e00O00O00O00O00O0000

Characteristics of resources: sub-collections (3/5)

A resource may contain sub-collection resources.

Examples:

A\
) /students/l/ =.@

e /students/1/exams/3

Data formats RESTful services
0000000 0000000000000 0e0O00000O00O00O0000

Characteristics of resources: Hypermedia (4/5)

Ison
HTTP D kM

R

[o

e The media type identifies a specification that defines how a
representation is to be processed.

is the data format of a representation.

A RESTful API looks like hypertext: every addressable unit of
information carries an address, either explicitly (e.g., link and ID
attributes) or implicitly (e.g., derived from the media type
definition and representation structure).

Data formats RESTful services
0000000 0000000000000 00eO00O00O00O0000000

Characteristics of resources: Self-description (5/5)

e Resource representations shall be self-descriptive.
—_—
e The client does not need to know if a resource is an employee

or a device.
e The client should act based on thd media typeSassociated with

the resource.

Every media type defines a default processing model. For example,
HTML defines a rendering process for hypertext and the browser
behavior around each element.

RESTful services

Data formats
00000000000 00OO0Oe0000000000000000

0000000

Object Modeling

Identify the objects that will be presented as resources J

Running example with three resources:
- Students
= e Courses (refers to all the courses available to all the students)
- o Exams (an exam is associated to a student)
where:
e Exam is a sub-resource of a student.
e A student can be associated to many exams.

e All objects/resources have a unique identifier, which is the
integer id property.

Data formats RESTful services
0000000 0000000000O00OO00Oe000000000000000

Create Model URIs

/students
- /students/{studId}

—> /courses

-—7/courses/{courseId}

—) /exams
—> /exams/{examId}

/students/{studIld}/exams
/students/{studIld}/exams/{examId}

Data formats RESTful services
0000000 0000000000O0O0OO0O0O00e00000000000000

Determine Resource Representations (1/8) §SON

Collection of students

{
‘5 "count":
B "total":
"self-url": '
r"students”: _
F{
"id": 123481 /a

—m————
ml students/12345",
= e

0 "family name": "Doe", -
"birthdate": "1999-12-31", |
"graduated": false .

"idhyg :
self-url": "/students/54321"
seppegtaiic : "Jane',
"family name": "Doe",
"birthdate": "1999-01-01",
"graduated": true,

Data formats RESTful services
0000000 0000000000O0O0OO0O0O000e0000000000000

Determine Resource Representations (2/8)
Single student resource A4 30 = A4 %)

{
"id": "12345",
"self-url":
"first name": ohn™,

"family name": "Doe",
"birthdate": "1999-12-31",
"graduated": false
exams": [

{

nidn: "345",
"self-url": '"Vexams/34§', (
"course": "Robo

"course-url": ‘J/courses/1000",
"date e 20020816

nidv: 349",

"self-url": gxams/349"

"course": "Systems for Industry 4.0 and environment (IoT)",
"course-url": ,

"date": "2022-03%03",

"mark": 33

'

Data formats RESTful services
0000000 00000000000 0O0OOO0O000Oe000000000000

Determine Resource Representations (3/8)

Collection resource of courses

"courses": [
—

{
nidv: "1000",
"self-url": ”/courses(/lOOO",
(o) "title": "Rghoties!,
"a/y": "2022-23",
"teacher": "Tullio Facchinetti",
"mandatory": false

"id": "1001",

"self-url": ”/courses@)}r

/‘ "title": "Systems for Industry 4.0 and environment (IoT)",
"a/y": "20277284—

"course-url": "/courses/1001",

"teacher": "Tullio Facchinetti",

"mandatory": true

Data formats
0000000

RESTful services
000000000O0O0OOOO000000e00000000000

Determine Resource Representations (4/8)

Collection resource of exams

{
"count": ﬁ
"total":
"self-url™ &xams",
"exams": [
{
"id": "345",

"self-url": "/exams/345", ?

"course": "Robgtics",
"course-url": §/courses/1000"
"date": ,.20

L J
nidv: 349",
"self-url": "/exams/349",
"course": "Systems for Industry 4.0 and environment (IoT)",
"course-url": "/courses/1001",
"date": "2022-03-03",
L

Data formats RESTful services
0000000 000000000O0O0OOO0O0000000e0000000000

Determine Resource Representations (5/8)

Single course resource

{
"id": "1001",
"self-url": "/courses/1000",
"title": "Systems for Industry 4.0 and enviromment (IoT)",
"a/y": "2022-23",
"teacher": "Tullio Facchinetti",
"laboratories": true
"computers required": true,
"mandatory": true —
¥ ——

Data formats RESTful services
0000000 0000000000OO0OOO0O00000000e000000000

Determine Resource Representations (6/8)

Single exam resource

{
nign: "349",
"self-url": "/exams/349",
"course": "Systems for Industry 4.0 and environment (IoT)",
"course-url": "/courses/1001",

"date": "2022-03-03", (‘

KETGNS MGTRON
) <

Data formats RESTful services
0000000 000000000O0O0OOOO0O00000000e00000000

Determine Resource Representations (7/8)

Collection resource of exam under a single student

{
"count": 2,
"self-url": {/students/12345/exams" |
—
"exams": [J

{
["self-url": "/students/12345/exams/345", '

"details": "/exams/345"

"self-url": "/students/12345/exams/349", @
"details": "/exams/349"

} A

Data formats RESTful services
0000000000O0O0OOO0000000000e0000000

0000000

Determine Resource Representations (8/8)

le student

FORMAT mosT pe Fix
$pe TEb Al

{ R
nign: , L
20 and environment (IoT)",

"course": ems for Industry
l "exam-url": "/exam/349",

"date": "2022-03-03 5
"mark": 33

o

Data formats RESTful services
0000000 000000000000000000000000008000000

Methods of RESTful services
L UTTP (%)

Method Safe Idempotent Description
GET w Q_() retrieves a representation of a
- valid resource
POST N N process a representation of a
—— = given request (W‘L e W)
PU__’_T N @ create a resource iden-
tified by a request URI
DELETE N Y delete a resource identified by
the requested URI

e Safety: a request does not change the state of the system.
e Ildempotency: multiple identical requests has the same effect
as making a single request.

Data formats RESTful services
0000000 0000000000OOOOOO0O00000000000e00000

Define HTTP calls and endpoints (1/6)

Access a list of primary resources

HTTP GET-/students ~ —
HTTP GET /courses =
HTTP GET /exams ~

If the collection size is large, paging and filtering can be applied.
For example, the following requests will fetch the first 10 records

from the collections: 2
= 10 > 20...23
HTTP GET /studentgv?_startIndexJ&size=10 \—3 O_,‘ :)

HTTP GET /courses?startIndex=0&size=10
HTTP GET /exams?startIndex=0&size=10

The total field in the answer allows to evaluate the number of
queries required to retrieve all the information.

Data formats RESTful services
0000000 0000000000OO0O0OOO0000000000000e0000

Define HTTP calls and endpoints (2/6)

Browse all exams under a student

HTTP GET /students/{studIld}/exams

~__/

Browse a specific resource

HTTP GET /students/{studId} *
HTTP GET /courses/{courself} s
HTTP GET /exams/{examId} ,

Browse a single exam under a student

HTTP GET /students/{studld}/exams/{examId}

Data formats RESTful services
0000000 000000000O0OO0OOO000000000000000e000

Define HTTP calls and endpoints (3/6)

Create an element of a primary resource

HTTP POST /courses

HTTP POST /exams

e The HTTP POST method is not idempotent, thus it is fine
for this purpose

e The request does not need to specify any id, which will be
assigned by the service

Data formats RESTful services
0000000 000000000O0OO0O0OO0O000000000000000e00

Define HTTP calls and endpoints (4/6)

A0
Update a primary respurce

HTTP PUT /students/{studId}
HTTP PUT /courses/{courseld}
HTTP PUT /exams/{examId}

e The HTTP PUT method is idempotent, thus it is fine for this
purpose

Data formats RESTful services
0000000 0000000000000000000000000000000e0

Define HTTP calls and endpoints (5/6)

Remove a primary resource

HTTP DELETE /students/{studId}
HTTP DELETE /courses/{courseId}
HTTP DELETE /exams/{examId}

—>
e A response for a successful operation should b D

(Accepted) if the resource has been queued for défetion
(async operation), or(200 (OK) Y 204 (No Content) if the
resource has been deleted permanently (sync operation).

e In case of async operation, the application shall return a task
id that can be tracked for success/failure status.

e Usually, a soft delete is preferable, i.e., where a resource is set
its status as DELETED instead of being actually removed.

Data formats RESTful services
0000000 000000000O0O0O0OOO00000000000000000e

Define HTTP calls and endpoints (6/6)

Apply a to an exam under a student

HTTP PUT /students/{studld}/exams/{examId}

Remove an exam under a student

HTTP DELETE /students/{studIld}/exams/{examId}

