.75
The File System

Files in Linux

Stefano Quer and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

Operating Systems Ny 2

File System

% The file system is one of the most visible aspects
of an OS

% It provides mechanisms to save data
(permanently)
% It includes management of
> Files
» Direttories
» Disks and disk partitions

Operating Systems Ny 3

% Information is store for a long period of time

» independently from

= Termination of programs/processes, power supply,
etc.

%+ From the logical point of view a file is

> A set of correlated information

= All information (i.e., numbers, characters, images,
etc.) are stored in a (electronic) device using a
coding system

ontiguous address space

How is this information
encoded?

What is the actual
organization of this space?

Operating Systems T 4

ASCII encoding

128 total characters
% De-facto standard 32 not printable

» ASCII, American Standard 96 printable

Code for Information Interchange
= Originally based on the English alphabet
= 128 characters are coded in 7-bit (binary numbers)

» Extended ASCII (or high ASCII)
= Extension of ASCII to 8-bit and 255 characters

= Several versions exist

e ISO 8859-1 (ISO Latin-1), ISO 8859-2 (Eastern
European languages), ISO 8859-5 for Cyrillic
languages, etc.

The alphabet of Klingom }

language is not supported
by Extended ASCII

Operating Systems Sl | A 5

Extended ASCII table

The ASClicode www.theasciicode.com.ar

NULL (caracter nulo) “Ul espacio @ 128 ¢ a 192 COh L 224 0 0
01 Z "1 SOH (inicio encabezado) 33 21h ! 65 41h A 97 a 129 a 161 A1h i 193 Cih 4 225 B
02 o STX (inicio texto) 34 22h " 66 0 B 98 b 130 é 162 ~2h] 194 C2h 226 o}
03 on ETX (fin de texto) 35 # 67 C 99 c 131 a 163 0 1] 195 -L 227 o]
04 o0 EOT (fin transmisidn} 36 $ 68 D 100 d 132 a 164 0 1] 196 - 228]
05 ©°h ENQ (enguiry} 37 % 69 E 101 e 133 a 165 0 fi 197 -|- 229 o]
06 0o ACK (acknowledgement) 38 26h & 70 F 102 f 134 a 166 o0 8 198 a 230 u
07 ©'n BEL (timbre) 39 27h " 7 G 103 g 135 ¢ 167 -0 ° 199 A 23 p
08 oo BS (retroceso) 40 Coh { 72 H 104 h 136 é 168 0 é 200 L 232 b
09 039h HT (tab horizontal} 41 2oh) 73 1 105 i 137 8 169 ~oh ® 201 Jt 233 u
10 LF (zalto de linsa) 42 * 74 J 106 i 138 @& 170 - 202 = 234 u
11 0Bh VT (tab vertical) 43 CHn + 5 4Bh K 107 cEn k 139 T 171 “Eh Ve 203 = 235 u
12 0OCh FF (form feed) 4 Con , T6 4Ch L 108 -0 I 140 i 172 C Ya 204 -|£ 236 y
13 CR (retorno de carro) 45 - 77 1] 109 G0h m 141 i 173 i 205 = 237 Y
14 0 50 (shift Out) 46 E . 78 N 110 =0 n 142 A 174 [206 Jllr' 238 -
15 0OFh Sl (=hift In} 47 oFh I 79 o] 111 (] 143 A 175 207 o 239 .
16 10 DLE (datalink escape) 48 20h 0 80 P 112 p 144 E 176 208 d 240
1w 10 D1 (device control 1) 49 0 1 81 Q 113 0 q 145 & 177 = 209 b 2n +
18 12h DC2 (device control 2) 50 3Zh 2 82 R 114 00 r 146 Jis 178 210 E 242 _
19 12 DC3 (device control 3) 5 3 83 5 115 o0 5 147 a 179 21 E 243 %
20 14 DC4 (device control 4) 52 4 84 T 116 th t 148 i) 180 212 E 244 1
21 11 MNAK (negative acknowle.) 53 5 85 U 117 u 149 o 181 A 213 1 245 §
22 16h SYN (synchronous idle) 54 6 86 v 118 v 150 i} 182 A 214 | 246 +
23 1'h ETB (end oftrans. block) 55 7 87 w 119 w 151 i 183 A 215 i 247 .
24 1on CAN {cancel) 56 8 88 X 120 X 152 i 184 (] 216 1 248 e
25 1on EM (end of medium} 57 9 89 Y 121 N y 153 o] 185] 217 4 249 -
26 10 SUB (substitute} 58 H 90 z 122 74h z 154 1] 186] 218 250 .
27 15h ESC (ezcape) 59 H)| [123 7B { 155 8 187 ﬂ 219 i 251 1
28 FS (file separator) 60 < 92 \ 124 0 | 156 £ 188 220 = 252 #
29 GS (group separator) 61 = a3 1 125 0 1 157 @ 189 ¢ 221 1 253 2
30 RS (record separator) 62 = 94 A 126 -0 -~ 158 x 180 ¥ 222 I 254 [
4| Fh us (unit =eparator) 63 ? 95 _ 158 f 191 1 223 L 255 FFh
127 01 DEL (delete) theASCllcode.com.ar

Operating Systems 17 6

LY

Unicode encoding

% Industrial standard that includes the alphabets for
any existing writing system
» It contains more 110,000 characters
» It includes more than 100 sets of symbols

%+ Several implementations exist
» UCS (Universal Character Set)
» UTF (Unicode Tranformation Format)
= UTF-8, groups of 8 bits size (1, 2, 3 or 4 groups)
e ASCII coded in the first 8 bits
= UTF-16, groups of 16 bits size (1 or 2 groups)
= UTF-32, groups of 32 bits size (fixed length)

Operating Systems 7 4

Textual and binary files

% A file is basically a sequence of bytes written one
after the other

» Each byte includes 8 bits, with possible values 0 or 1
> As a consequence all files are binary

<+ Normally we can distinguish between

» Textual files (or ASCII)
> Binary files C sources, C++,
Java, Perl, etc.

} 4 Remark: N

Executables,

The UNIX/Linux kernel
Word, Excel, etc.

does not distinguish
between binary and
_ textual files Y

Operating Systems 17" 8

Textual files (or ASCII)

% Files consisting of data encoded in ASCII

» Sequence of 0 and 1, which (in groups of 8 bit)
codify ASCII symbols

% Textual files are usually “line-oriented”

» Newline: go to the next line

= UNIX/Linux and Mac OSX
e Newline = 1 character
e Line Feed (go to next line, LF, 10,,)
= Windows
e Newline = 2 characters
e Line Feed (go to next line, LF, 10,,)
+ Carriage Return (go to beginning of the line, CR, 13,,)

Operating Systems 17 9

LY

Binary Files

% A sequence of 0 and 1, not “byte-oriented”

*» The smallest unit that can be read/write is the bit
» Non easy the management of the single bit

» They usually include every possible sequence of 8
bits, which do not necessarily correspond to
printable characters, new-line, etc.

%+ Why are binary files used?

» Compactness

= Examples
e Number 100000,
e Text/ASCII format: 6 characters, i.e., 6 bytes
e Binary format: coded as integer (short) on 4 bytes

Operating Systems 10

String

Textual or binary file
\cl \il \al \ol -

99,, 105,, 97,, 111,
01100011, 01101001, 01100100, 01101111,

“ciao”

\\231//

‘27 37 \1¢ 4{ Integer number
50,, 51,, 49,, Textual file)

00110010, 00110011, 00110001,

“231” Integer number
“231,,” Binary file

\111001112 /

Operating Systems T 11

% Process of translating a structure (e.g., C struct)
into a storable format

» Using serialization, a struct can be stored or
transmitted (on the network) as a single entity

» When the sequence of bits is read, it is done in
accordance with the serialization process, and the
struct is reconstructed in an identical manner

%+ Many languages support serialization using R/W
operations on a file

Operating Systems 12

|

4 N

struct mys { U=
S by Single fields
int id; Characters on 8 bits (ASCII)
long int rn;
char n[L], c[L];
int mark; a B
} s; 1 100000 Romano Antonio 25
o %
Binary: + Romano IIIIIITIITITIIIITIIIIIII

\\\\\\\\\\\\\\\\\\\\\\\\\

Serialization Antonio IIIIIITIIIIIIIIIIIIIIIIIII
Ctr on 8 bits (ASCII)

Binary: 111111111111111111111111111181118
Serialization 1 maL i iissassssasans

Ctron 16 bits (UNICODE) | | 0
N8 e erEr e \IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

Operating Systems o i b= 13

ISO C Standard Library

% I/O operations with ANSI C can be performed
through different categories of functions
» Character by character
» Row by row
» Formatted I/O
» Binary I/0O
» Read examples
= https://www.skenz.it/cs/c language/file reading 1
» Write examples
= https://www.skenz.it/cs/c language/file writing 1
» Binary I/O examples

= https://www.skenz.it/cs/c language/write and read
a binary file

https://www.skenz.it/cs/c_language/file_reading_1
https://www.skenz.it/cs/c_language/file_writing_1
https://www.skenz.it/cs/c_language/write_and_read_a_binary_file

Operating Systems 14

ISO C Standard Library

% Standard I/0 is “fully buffered”

» The I/O operation is performed only when the I/O
buffer is full

» The “flush” operation indicates the actual write of
the buffer to the I/O

(I\
#include <stdio.h>

void setbuf (FILE *fp, char *buf);

int fflush (FILE *fp) ;
N //\ y,

[FOI’ concurrent processes, use:}

setbuf (stdout, 0);

never buffered fflush (stdout);

Standard error is }

Operating Systems i1 3]

Open and close a file

C N

#include <stdio.h>
FILE *fopen (char *path, char *type)

FILE *fclose (FILE *fp) ;

(S)

+»» Access methods
> r, rb, w, wb, a, ab r+, r+b, etc.

» The UNIX kernel does not make any difference
between textual files (ASCII) and binary files

A\Y /4

= The “b"” option has no effect, e.g. “r"=="rb”,

A\Y n

w”’=="wb", etc.

Operating Systems 16

I/0 character by character

4)
#include <stdio.h>

int getc (FILE *fp);
int fgetc (FILE *fp);

int putc (int ¢, FILE *fp);
int fputc (int ¢, FILE *fp);
_ J
+»» Returned values
» A character on success

> EOF on error, or when the end of the file is
reached

*»» The function

> getchar is equivalent to getc (stdin)
> putchar is equivalent to putc (¢, stdout)

Operating Systems I

I/0 row by row

4)
#include <stdio.h>

char gets (char *buf);
char *fgets (char *buf, int n, FILE *fp);

int puts (char *buf) ;
int *fputs (char *buf, FILE *fp);
_ J

+»» Returned values

> buf (gets/fgets), or a non-negative value in the
case of success (puts/fputs)

» NULL (gets/fgets), or EOF for errors or when the
end of file is reached (puts/fputs)

% Lines must be delimited by "new-line"

Operating Systems 18

Formatted I/0

4)
#include <stdio.h>

int scanf (char format, ..);
int fscanf (FILE *fp, char format, .);

int printf (char format, .);

int fprintf (FILE *fp, char format, .));
_)

%+ High flexibility in data manipulation
» Formats (characters, integers, reals, etc.)
» Conversions

Operating Systems 15

Binary I/0

4)
#include <stdio.h>

size t fread (void *ptr, size_ t size,
size t nObj, FILE *fp);

size t fwrite (void *ptr, size_ t size,
size t nObj, FILE *fp);
(S)

< Each I/O operation (single) operates on an
aggregate object of specific size

» With getc/putc it would be necessary to iterate on
all the fields of the struct

» With gets/puts it is not possible, because both
would terminate on NULL bytes or new-lines

Operating Systems 20

Binary I/0

4)
#include <stdio.h>

size t fread (void *ptr, size t size,
size t nObj, FILE *fp);

size t fwrite (void *ptr, size_ t size,
size t nObj, FILE *fp);
o)

*»» Returned values
» Number of objects written/read
> If the returned value does not correspond to the

parameter nObj ferror and feof can be }
used to distinguish
= An error has occurred T -

= The end of file has been reached

Operating Systems 21

Binary I/0

4)
#include <stdio.h>

size t fread (void *ptr, size t size,
size t nObj, FILE *fp);

size t fwrite (void *ptr, size_ t size,
size t nObj, FILE *fp);
o)

% Often used to manage binary files

> serialized R/W (single operation for the whole
struct)

> Potential problems in managing different
architectures
= Data format compatibility (e.g., integers, reals, etc.)
= Different offsets for the fields of the struct

Operating Systems o | = 22

POSIX Standard Library

% I/O in UNIX can be entirely performed with only
5 functions

» open, read, write, Iseek, close

% This type of access

> Is part of POSIX and of the Single UNIX
Specification, but not of ISO C

» It is normally defined with the term "unbuffered
I/O", in the sense that each read or write
operation corresponds to a system call

Operating Systems 1= 23

System call open()

% In the UNIX kernel a "file descriptor" is a non-
negative integer
%+ Conventionally (also for shells)
» Standard input
= 0 = STDIN_FILENO
» Standard output
= 1 = STDOUT_FILENO

» Standard error
= 2 = STDERR_FILENO

These descriptors are defined
in the headers file unistd.h

Operating Systems 24

System call open()

" #include <sys/types.h> A
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *path, int flags);

int open (const char *path, int flags,
g mode t mode) ;

% It opens a file defining the permissions
% Returned values

» The descriptor of the file on success
» -1 on error

Operating Systems 23

System call open()

' N
int open (

% It can have 2 or 3 parameters const char *path,
> The mode parameter is optional| X2t £:a9s.

mode t mode
< Path indicates the file to open |’

% Flags has multiple options

» Can be obtained with the OR bit-by-bit of
constants defined in the header file fentl.h
» One of the following three constants is mandatory
= O_RDONLY open for read-only access
= O_WRONLY open for write-only access
= O_RDWR open for read-write access

Operating Systems oo 26

System call open()

4)
int open (
const char *path,
int flags,
mode t mode

» Optional constants) ;
= O_CREAT creates the files if NOt exist .
= O_EXCL error if O_CREAT is set and the file
exists

O_TRUNC remove the content of the file
O_APPEND append to the file
O_SYNC each write waits that the physical
write operation is finished
before continuing

Operating Systems e 27

“
System call open()
4)
" . int open (
%+ Mode specifies access const char *path,
.. int flags,
> S_I[RWX] &)

> S_I[RWX]
> S_I[RWX]

When a file is created, actual permissions are
obtained from the umask of the user owner
of the process

Operating Systems 28

System call read()

C N

#include <unistd.h>

int read (int fd, void *buf, size_ t nbytes);

A J

% Read from file fd a humber of bytes equal to
nbytes, storing them in buf
% Returned values
» number of read bytes on success
» -1 on error
> 0 in the case of EOF

Operating Systems 1 29

System call read()

C N

#include <unistd.h>

int read (int fd, void *buf, size_ t nbytes);

A J

% The returned value is lower that nbytes

> If the end of the file is reached before nbytes
bytes have been read

> If the pipe you are reading from does not contain
nbytes bytes

Operating Systems 30

System call write()

C N

#include <unistd.h>

int write (int fd, void *buf, size_ t nbytes);

(S)

%+ Write nbytes bytes from buf in the file identified
by descriptor fd
% Returned values

» The number of written bytes in the case of
success, i.e., normally nbytes

> -1 on error

Operating Systems L 188 31

LY

System call write()

C N

#include <unistd.h>

int write (int fd, void *buf, size_ t nbytes);

(S)

% Remark
> write writes on the system buffer, not on the disk
= fd = open (file, O_WRONLY | O_SYNC);

» O_SYNC forces the sync of the buffers, but only
for ext2 file systems

Operating Systems

3z

|

y

float data[l0];

if (write(fd, data,
fprintf (stderr,
}

}

(&

10*sizeof (float))==(-1)) {
"Error: Write %d) .\n", n);

writing of the vector data (of

e

struct {
char name|[L];
int n;
float avg;

} item;

fprintf (stderr,

}
}

(&

if (write(£fd, &item,

float)

sizeof (item)))==(-1)) {
"Error: Write %d).\n", n);

Writing of the serialized struct
item (with 3 fields)

Operating Systems L 188 33

LY

System call Iseek()

4 I

#include <unistd.h>

off t lseek (int fd, off t offset, int whence);

& J

%+ The current position of the file offset is
associated to each file

» The system call Iseek assigns the value offset to
the file offset

Operating Systems 34

System call Iseek()

4 I

#include <unistd.h>

off t lseek (int fd, off t offset, int whence);

“» whence specifies the interpretation of offset

> If whence==SEEK_SET
= The offset is evaluated from the beginning of the file

> If whence==SEEK_CUR
= The offset is evaluated from the current position

If whence==SEEK_END
= The offset is evaluated from the end of the file

The value of offset It is possible to leave
can be positive or "holes" in a file
negative (filled with zeros)

Operating Systems i (a5 35

System call Iseek()

4)

#include <unistd.h>

off t lseek (int fd, off t offset, int whence);

. J

+» Returned values
» new offset on success
> -1 on error

Operating Systems i1 36

System call close()

C N

#include <unistd.h>

int close (int £d);

(S)

+»» Returned values
» 0 on success
> -1 on error

% All the open files are closed automatically when
the process terminates

Operating Systems

37

|

£ B

#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#define BUFFSIZE 4096
int main(void) {

int nR, nW, f£fdR, f£dw;
char buf[BUFFSIZE] ;

fdR = open (argv[1l], O _RDONLY) ;
fdWw = open (argv[2], O WRONLY | O CREAT | O TRUNC,
S IRUSR | S _IWUSR) ;
if (£dR==(-1) || £dw==(-1)) {
fprintf (stdout, “Error Opening a File.\nY);
exit (1);

}

A /

Operating Systems 38

|

C N
while ((nR = read (£fdR, buf, BUFFSIZE)) > 0) {
nW = write (£fdw, buf, nR);
if (nR'!'=nW)
fprintf (stderr,
"Error: Read %d, Write %d).\n", nR, nW);

}

if (nR< 0)
fprintf (stderr, "Write Error.\n");

close (£dR);

close (£dw) ;
Error check on the last

exit (0) ; reading operation

\ This program works indifferently on text and
binary files

