File System

Directories in Linux
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

Operating Systems 2

Directories

“» No storage system contains a single file

% Files are organized in directories

> A directory is a node (of a tree) or a vertex (of a
graph) that stores information about the (regular)
file that it contains

> Both directories and files are saved in mass
memory
%+ Operations that can be performed on directories
are similar to the ones applied to files

» Creation, deletion, listing, rename, visit, search,
etc.

Operating Systems 1= S

% Structuring a file systems by means of directories
has several advantages:

> Efficiency
= Speed in modifying the file system, e.g., searching a
file
» Naming
= Simplicity for a user to identify his files
= Allow to assign the same name to different files
» Grouping (organization)

= Grouping programs and data according to their
characteristics

e Editors, compilers, documents, etc.

Operating Systems 4

Directories with one level

» The simplest structure has only one level
% All the files of the file system are stored within
the same directory

» The files are differentiated by their name only

» Each name is unique within the entire file system
[Directory entry 1

00

00

directory test data mail cont

HHHL

f File (data)

Operating Systems i | 5

Directories with one level

+» Performance

> Efficiency

= Easily understandable and usable structure

= Easy and efficient managing of the file system
» Naming

= Files must have unique names

= Tt has evident limitations as the number of stored
files increases

» Grouping
= Management of files of a single user is complex

= Management of multiple users is practically
impossible

Operating Systems 6

Directories with two levels

+»» Files are contained in a two-level tree

< Each user can have their own directory
» Each user has its own directory
> All the operations are executed only in the correct

ho\me dlreCtory (Directory entry
[Main directory of the home of
(users) mfnggrgle user 1 | user 2 | user 3 | user n usern

User file : :
@ data bin progs cat data tmp tmp bin

Directory entry P ‘ ‘ ‘ ‘ ‘ ' ‘
of the home of
user 1 J File (data)

Operating Systems Qo 7

Directories with two levels

+» Performance

> Efficiency

= “user oriented” view of the file system

= Simplified and efficient searches on a single user
» Naming

= Jtis possible to have files with the same name if
they belong to different users

= A path name must be specified for each file
» Grouping

= Simplified between different users

= Complex for each individual user

Operating Systems 8

Tree directories

» Generalize previous directories systems
> D

irectories and files are organized as a tree

» Every node/vertex of the tree can include as entry
other nodes/vertex of the tree

00 00

root spell bin programs‘

oot Town [| [o | ro Joaoe] [p [« ool]
& \ 0600 <5/ IS

prt exp ‘ ‘reorder| list ‘ find

NN 686 []

|-'rst‘obj|peﬂ‘ -'.'H-'st|ﬁrst‘

o O

Operating Systems 17~ 9

V¥

Tree directories

% Every user can manage both files and directories
(and subdirectories)

» Concept of: current work directory, change of
directory, absolute and relative path name, etc.

+%» Performance Concepts analysed in
o the experimental part
> Efficiency related to Linux

= Efficient searches based on the tree structure and
therefore to its depth and breadth

» Naming

= With absolute path or relatice to the current working
directory

» Grouping
= Extended possibilities, flexible

Operating Systems T 10

Acyclic graph directories

% A tree file system does not allow sharing

% It is often useful to refer to the same object in
the file system with different filenames

» Same user refers to an object with different
pathnames

> Different users want to share objects
» It is worth noting that duplication of the object
(i.e., the copy) is not a solution because of
= Tncrease of file system occupation

» Possible information incoherence in one or more
copies

Operating Systems Ny 11

Acyclic graph directories

% Tree file systems can be generalized organizing
them as acyclic graphs.

» They allow to share information, making it visible
with different paths

root | dict | spell
list all w |count count|words| list
| Shared
» [ist | rade | w7 entry

Operating Systems 12

-y i 4 ::fl.',.

Acyclic graph directories

» Method

» The sharing of an entry can be obtained in
different ways

» In UNIX-like systems, the standard strategy is the
use of links
= A link is a reference (pointer) to another (pre-
existing) entry
» The presence of links increases difficulty in
managing file systems
= Necessary to distinguish between native entries and

relative links, during creation, modification, and
removal

Operating Systems 1= 13

Acyclic graph directories

%+ During a visit or a search

> If the entry is a link, the operating system must
use an indirect addressing, i.e., it has to “resolve”
the link to access the original entry

» By means of links, each entry of the file system
can be reached with different absolute pathnames
(and with different names)

= Analysis on the content of the file system (e.qg.,

statistics on how many “.c” files are present) are
much more complex

Operating Systems | i 14

Acyclic graph directories

% During the removal of an entry

» It is necessary to establish how to manage the link
and the referred object
= The removal of a link is usually performed
immediately, and in general it does not affect
original object
= [t is important to define how to delete the data

e If you delete the object, what do you do with the links
that point to the object?

e When can the space reserved for the object be
reused?

Operating Systems | o 3]

Acyclic graph directories

% Delete data immediately
> It is possible to leave links pending (dangling)

Soft-link » The OS is notified that the link does not point
UNIX to an entry when it tries to use it

Operating Systems T 16

Acyclic graph directories

» Delete data when the last link is deleted

» To avoid pending links we can track them, we
— have to manage the presence of multiple links
ard-link .
UNIX and objects

= Maintaining the list of all the links is expensive
(it is a list of variable length)

= Delete all the links (i.e., the entries) when the
object is deleted is expensive, because you
need to search all the links

» It is convenient to store only a counter

[“g - g(number of links)
command = In UNIX systems this counter is stored in i-node

= Increased and decreased appropriately

Operating Systems 1= I

Acyclic graph directories

% Creating a new link to a directory could cause the
generation of a cycle in the file system
» Managing a cyclic graph is more complex
= Search and visit has to avoid infinite recursion

» The simplest strategy is to avoid the creation of a
link pointing a directory

Operating Systems 1= 18

Cyclic graph directories

% The alternative to acyclic graphs is cyclic graphs
> Allow the creation of cycles
» Need to manage them appropriately in all phases

root | dict | spell

N

list all w |count count|words| list
é K \d 6
L—"
N
Presence of J/
Y \ A
a CyCIe data | list | rade | w7

Operating Systems 19

Cyclic graph directories

+ Different approaches could be used to manage
cyclic graphs
% These approaches should take into account
different problematics
» An element may self-reference itself, and never be
deleted and/or detected

% The simplest method is not to visit links or sub-
categories of the link

Operating Systems i 15 20

Allocation

%+ Allocation techniques

> For allocation we mean techniques for choosing
the blocks of the disks to store files

> Observation

= We will not deal with the structure of the storage
units

= Those unit can be modelled as a linear indexable set
(a vector) of blocks

%+ Main allocation thechnique
» Contiguous
> Linked
> Indexed

Operating Systems 17~ 21

V¥

Contiguous allocation

“* Each file is stored in a contiguous set of blocks

directory
O file start length _ _
o] 101 207 307 out 0 2 For each file, the directory
f tr 14 3 specifies the start address
4L 501 eLd 7L mal 19 6 of the first block (b), and
a[] o[1ol T11[] list 28 4 the length of the file (n)
tr f 6 2
12113114 115[]
16[J17[J18J19[] The file use the blocks }

3 -
20D21Dm§émzsm b, b+1, b+2, ..., b+n-1
24D25D_26[|27D
285295“25531 Each file has internal

fragmentation (last block
. only partially used)

Operating Systems - § 22

Contiguous allocation

% Advantages
> Really easy allocation strategy
= Few information is stored for each file

» It allows immediate and sequential accesses

= Each block is after the previous one and before the
following one (i.e., blocks are consecutive)

> It allows simple and direct accesses

= The block i starting from block b is at address
b+ i-1

Operating Systems 1= 23

Contiguous allocation
It is necessary to find a
+» Drawbacks contiguous free space of
i . i sufficient size
> An allocation policy is needed
= Where are new files allocated?
e Algorithms: first-fit, best-fit, worst-fit, etc.
e How can the required space be determined?
» No allocation algorithm is free of defects,
consequently there is a waste of space
= This waste is known as external fragmentation
= Possible re-compaction (on-line and off-line)

» Dynamic allocation problems

= Files cannot grow indefinitely, because the available
space is limited by the next file

Operating Systems L 188 24

LY

Linked allocation

*+ Each file can be allocated by means of a linked

list of blocks
The directory contains a
o T directory pointer to the first and to
| | e start end the last block of the file
jeep 9 25
g = 2 18] |

Each block contains a
8] pltof211] L pointer to the next block

17118]19[]

20 |:|21 2 D23|:|

p
2425126 [127[] Blocks of each file are
28[]29[130[]31[] scattered throughout the

f 4 entire disk

Operating Systems

Linked allocation

%+ Advantages

» Resolve problems of contiguous allocation
= Allows dynamic allocation of file
= Eliminate the external fragmentation
= Avoid the use of complex allocation algorithms

Operating Systems <l § AL 26

Linked allocation

+*» Drawbacks

» Each read operation imply a sequential access to
the blocks
> It is efficient only for sequential accesses

= Direct access requires reading a chain of pointers
until the desired address is reached

= Each access to a pointer (or block) consists in a read
operation
» To store pointers
= Space is required
= Pointers are critical from the viewpoint of reliability
= Decrease the space usable to store data

Operating Systems Ny 27

Linked allocation: FAT

% It is the allocation used by da MS-DOS fm“ﬂi’{ﬁepﬁ:ziifm}
> Based on a FAT (File Allocation Table) /. °ne specific block
> It is a variant of the typical linked allocation

< FAT
> Is a table with an element for any block of the disk

» The sequence of blocks related to a file are
reported inside the directory through
= The first element of the file in the FAT

= Sequence of pointers located (directly) inside the
FAT (instead of inside each block as in the linked
allocation)

Operating Systems 28

Linked allocation: FAT

+»» References are not stored inside the blocks on
the disk but directly in the elements of the FAT

% The reading of each block requires two disk
accesses (one to the FAT and one to the block to

read) directory entry
test | eee [217
- Slow access name start block o
® Criticism on reliability (if the
FAT is lost, everything is lost) Directory 217 618
® What is the size of the FAT? entry

339

618 339

no. of disk blocks —1

FAT

Operating Systems)

Indexed allocation

% To allow an efficient and direct access, it is
possible to incorporate all the pointers into a
table of pointers

» This table of pointers is usually named index
block or i-node

%+ Each file has its own table, which is a vector of
addresses of the blocks in which the file is
contained

> The i-th element of the vector identifies the i-th
block of the file

Operating Systems Ny 30

Indexed allocation

[The directory contains only J

the pointer to the index block

directory /

file index block
o] 1IZL\2IZI 3] lesp b
4[] 5[] 7] It is not a FAT because
pointers are all in
8L 9 sequence (there is not a

list of pointers)

20 J21[J22[A23[]
2425 J26[127]
28129 130[131[]

Operating Systems 7 31

Indexed allocation

% Compared to the linked allocation, the allocation
of an index block is always needed

> Index blocks of limited size allow to reduce the
waste of space

> Index blocks of extended size increase the number
of references that can be inserted in the index

block
= In any case, it is necessary to manage situations in
which the index block is not sufficient to contain all
the pointers to the blocks of the file
= There are different schemes
e With linked index blocks
e With multi-level index blocks
e Combined

J Schema UNIX/Linux }

Operating Systems 32

Indexed allocation: combined schema

%+ Combined schema is used in UNIX/Linux systems
< To each file is associated a block named i-node

*+ Each i-node contains different information
including 15 pointers to the data blocks of the file

> The first 12 pointers are direct, i.e., they points to
the blocks of the files

» Pointers 13, 14 and 15 are indirect pointers, with
increasing addressing level

e The block addressed by a pointer does not contain
data, but pointers (pointers to pointers) [pointers to
pointers to pointers] to the data blocks of the file

Operating Systems

33

h 4

Remember the mode
commands owners (2)
"Is -1a" timestamps (3)
—— (]
..anc.l,, size block count
IS -i
direct blocks 7 :
The pointer]
13 is of type L)
single indirect S —— _4_[
double indirect *—{ data | J?
triple indirect \ L-

\

h 4

The pointer 14 is of
type double indirect

1

——»{ data |
— e

data

——>{ data

The pointer 15 is of
type triple indirect

1

With 64-bits pointers,
files up to 20 (exabyte)
bytes can be stored

Operating Systems

‘ Hard-link \

[A directory is a table that associates to each file name an i-node number

The pointer from a directory to the respective i-node is called hard-link
The same i-node number can be addressed by more links

Operating Systems

Fixed length record that contains most of the \
information related to files (i.e., it identifies the file
blocks)
Contains a counter that identifies the number of
pointers (links)
They are numbered starting from 1; some are

\ reserved for the OS J

=

The i-node number
corresponds to the index (a
link) to a table in which each i-
node contains the information
related to a file Y,

Operating Systems 7 36

Allocazione indicizzata: schema combinato

% Hard link (physical link)
» Directory entry che points (links) an i-node

> No hard link

= To directory (to avoid file system with cyclic graph
directories)

= To file on other file systems

> A file is physically removed only when all the hard
links have been removed

% Soft link (Symbolic link)
» The data block identified by the i-node points to a
data block that contains the path name of the file

> Basically, it is a file that in its only data block has
the name of another file

Operating Systems

directory blocks and data blocks
directory

i-noxde array di;:::y Black
,‘I \\\\ *\. 'I l|‘ 5 “y. : \l
/ N e .‘ / FATHER DIR.
',' !) i Directory entry of
: ! \ ! the directory 1267
li-nod -node| i-node / \ [
0 1267 2549 | — ’. (unknown name)
B0 . .
DIR. CHILD 267 ..) \
Directory entry e
of "2549 testdir" T
2549 | reetdir
The i-node 2549 is a sub-directory (leaf)
Its hard link count is equal to 2
The i-node "2549 testdir" is a
sub-directory (leaf) of 1267

One derives from the father directory ("testdir")
The other derives from itself ("testdir/.")

Operating Systems

[}

i-nexde array

\j

of "2549 testdir"

C)
o /
The i-node 1267 is a directory with a sub-directory
Its hard link count is equal at least to 3
One derives from the father directory (not reported)
One derives from itself (".") The i-node "2549 testdir" is a
_ One derives from the child directory ("./testdir/..") /| sub-directory (leaf) of 1267

Operating Systems 17~ 39

Management of the file system

%+ The POSIX standard provides a set of functions
to perform the manipulation of directories

» The function stat
[S Allows to understand the type of "entry" (file,

Aeiis directory, link, etc.)

structure This operation is permitted using the C data
structure returned by the function, i.e. struct stat

» Some other functions to manage the file system

= getcwd, chdir j(Positioning

= mkdir, rmdir T e ~
. . . reation

= opendir, readdir, closedir Cancellation

_J
[Jﬁit/ Inspection J

Operating Systems

40

|

Path toreturn .| Returned
e) i
information data
#include <sys/types.h> about structure

#include <sys/stat.h>

int stat (const char *path, struct stat *sb);
int 1lstat (const char *path, struct stat *sb);
int fstat (int f£d, struct stat *sb);

A

*» The function stat returns a reference to the
structure sb (struct stat) for the file (or file
descriptor) passed as a parameter

*» Returned values

» 0 on success
» -1 on error

Operating Systems 41

C N

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char *path, struct stat *sb);
int 1lstat (const char *path, struct stat *sb);
int fstat (int f£d, struct stat *sb);

A J

*+» The function

> Istat returns information about the symbolic link,
not the file pointed by the link (when the path is
referred to a link)

> fstat returns information about a file already
opened (it receives the file descriptor instead of a
path)

Operating Systems 42

4 N
struct stat {
mode t st mode; /* file type & mode */
ino_t st ino; /* i-node number */
dev_t st dev; /* device number */
dev_t st rdev; /* device number */
};
A)

% The second argument of stat is the pointer to
the structure stat

% The field st_mode encodes the file type

Operating Systems 43

4 N
struct stat {
mode t st mode; /* file type & mode */
ino_t st ino; /* i-node number */
dev_t st dev; /* device number */
dev_t st rdev; /* device number */
};
A)

%+ Some macros allow to understand the type of the
file
» S_ISREG reqgular file, S_ISDIR directory,
S_ISBLK block special file, S_ISCHR character
special file, S_ISFIFO FIFO, S_ISSOCK socket,
S_ISLNK symbolic link

Operating Systems

44

|

p

}

if
else
else
else
else
else
else

—

if
if
if
if
if
if

struct stat buf;

if (lstat(argv[i], &buf) < 0) {
fprintf (stdout,
exit(1l);

(S_ISREG (buf.st mode))
(S_ISDIR(buf.st mode))
(S_ISCHR (buf.st mode))
(S_ISBLK (buf.st mode))
(S_ISFIFO (buf.st mode))
(S_ISLNK (buf.st mode))
(S_ISSOCK (buf.st mode))

printf ("%$s\n", ptr);

ptr
ptr
ptr
ptr
ptr
ptr
ptr

"lstat error.\n") ;

Allow to
understand
if it is a
directory !

"regular";
"directory";
"char special";
"block special’;
"fifo";
"symbolic link";
"socket";

/

Operating Systems i1 45

getcwd () and chdir ()

Dimension of
buf

/

#include <unistd.h>

Get Current
char *getcwd (char *buf, int size); Working Directory

int chdir (char *path); r

| Change
A% . Directory

% Get (change) the path of the working directory

+»» Returned values

> getcwd
»= The buffer buf on success; NULL on error

> chdir
= (0 on success; -1 on error

Operating Systems

46

|

p

#define N 100
char name|[N];

if (getcwd (name, N) == NULL)

fprintf (stderr, "getcwd failed.\n");
else

fprintf (stdout, "dir %s\n", name);

if (chdir (argv[1l]) < 0)

fprintf (stderr, "chdir failed.\n");
else

fprintf (stdout, "dir changed to %s\n"

S

, argv[l]);

Operating Systems

47

mkdir () and rmdir ()

-
#include <unistd.h>
#include <sys/stat.h>

int mkdir (const char *path, mode t mode) ;

int rmdir (const char *path);

-

“» mkdir creates a new (empty) directory, rmdir
deletes a directory (if it is empty)

+»» Returned values
» 0 on success
> -1 on error

Operating Systems 48

opendir (), dirent () and closedir ()

Returned values:
he pointer to the directory on success
%,& The NULL pointer on error
DIR *opendir (
const char *filename

) ;

#include <dirent.h> j Open a directory for reading
-~

Proceed with the reading of the directory
Returned values:
The pointer to the directory on success
The NULL pointer on error, or at the end
of the reading operation

struct dirent *readdir
DIR *dp
)

int closedir (— Terminate the reading

DIR *dp Returned values:
) ; 0 on success
N j -1 on error

Operating Systems 1 49

dirent structure

C)

struct dirent {
inot t d no;
char d name [NAM MAX+1];

}
N J

% The structure dirent (DIR *) returned by
readdir

» Has a format that depends on the specific
implementation
> It contains at least the following fields
= The i-node number
= The file name (null-terminated)

Operating Systems

50

|

Structure for Istat
/ #define N 100

éi.::.:uct stat buf; Directory "handle”
DIR *dp;

char fullName[N];
struct dirent *dirp;
int i;

Structure for readdir

if (lstat(argv[1l], &buf) < 0) {
fprintf (stderr, "Error.\n"); exit (1);
}
if (S_ISDIR(buf.st mode) == 0) {
fprintf (stderr, "Error.\n"); exit (1);
}
if ((dp = opendir (argv[1l])) == NULL) {
fprintf (stderr, "Error.\n"); exit (1);

d

Ask information
about the path in

argv[1]
|

Ifitis not a
directory, the
program terminates

Otherwise, the
directory is open

)

Operating Systems 51

|

/ Read the directory
9 = @) (iterating over all entries)
while ((dirp = readdir(dp)) '= NULL) {

sprintf (fullName, "%$s/%s", argv[l], dirp->d name);
if (lstat(fullName, &buf) < 0) {

Request
fprintf (stderr, "Error.\n"); exit (1), information
} about the entry
if (S_ISDIR(buf.st mode) == 0) { fullName
fprintf (stdout, "File %d: %s\n", i, fullName)
} else {

fprintf (stdout, "Dir %d: %s\n", i, fullName) ;
}
i++;
} Display data
if (closedir(dp) < 0) {
fprintf (stderr, "Error.\n"); exit (1);
&

Closure and termination /

