UNIX/Linux environment

C programming tools
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

o

Operating Systems — 'I . 2

% Integrated Development Environment (IDE)

*» Some "free" IDEs are:
> Netbeans
= C, C++
= https://www.netbeans.org/
> Code::Blocks
= C, C++, Fortran

http://www.codeblocks.org/

Operating Systems

> Eclipse

= Java, C++, etc.

= http://www.eclipse.org/
» CodelLite
» Geany

= Very simple, few plug-ins
» MonoDevelop
» Anjuta

http://www.eclipse.org/

Operating Systems

% Editors typically used in UNIX/Linux
» Sublime
» Atom
> Vim (Vi)
> Emacs
> Gedit
» Nano
> Brackets
> Bluefish
» Spacemacs

Operating Systems J—" iI o 5

+» Text editor

» Present in all BSD and Unix systems (and also in
embed systems)

» Developed since 1976
» Last version (8.1) in 2018
%+ Base version (Vi)
» Is not functional for extensive file editing

» Very useful if other editors cannot be used, or give
some problem

= e.g., remote editing

Operating Systems 114 6

% Expanded and improved over time
» Vim = VI Improved

» In the newer versions can be used for editing large
projects
= Multi-level undo, multi-window, multi-buffer, etc
= On-line help, syntax highlighting, etc.
% Together with emacs, it is one of the
protagonists of the "war of the editors"

¢+ Extensions allow to increase editor features

Operating Systems — ;I = 4

+»» Run with the command
> Vi filename

% It provides different operating modes

» Command Mode
= Cursor positioned in the text
= The keyboard is used to issue commands
» Input Mode
= Text insertion mode
= The keyboard is used to insert the text
> Directive Mode
= Cursor positioned on the last line of the video
= The keyboard is used for control directives

Operating Systems w | 8

Command Mode Command
Cursor movements — = (h 3, kD)
Al
Insert Mode (from the cursor) 0_sgo i

Insert Mode (at the beginning of the line) | "9 I
Append Mode (from the cursor) a
Append Mode (at the end of the line) A
Overwrite Mode R

Pass (return) to Command Mode esc (key)
Delete a row dd Also
Delete a single character X n-dd

N n-x

Documentation

Local help : man vim

Online resources: http://www.vim.org/docs.php

Resources in PDF: ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf

ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf

Operating Systems - ;I o 9

Command Mode (continue) Command
Insert last deletion P
Delete a character X
Cancel the last operation (undo) U
Restore the last change (redo) Ctrl-r
Directive Mode Command

Pass to Directive Mode (last line)

Show line numbers :set num
Save the file :w!, :w fileName
Exit without saving the latest changes :q!
Enter the on-line help :help
~

[Learn Vim (from Google): Vim Adventures https://vim-adventures.com/ J

https://vim-adventures.com/

Operating Systems 17~ 10

K

Editor: emacs

% Free text editor
» Emacs = Editor MACroS
» Developed since 1976
» Last version (26.2) in 2019

> Initially developed by Richard Stallman
https://en.wikipedia.org/wiki/Richard Stallman

% Preferred by many advanced programmers:
powerful, extensible, flexible

*+ Various versions, but the most popular are
» GNU Emacs
» Xemacs = next generation Emacs

https://en.wikipedia.org/wiki/Richard_Stallman

A

Operating Systems

Editor: emacs

*+ Available for
> GNU, GNU/Linux
» FreeBSDm, NetBSD, OpenBSD
» Mac OS X
> MS Windows

Operating Systems o, | 12
Editor: emacs

% Advantages

» Many features, more powerful than the simple text
editor

» Fully customizable

> Fast execution of complex operations
% Disadvantages

> Slow learning curve

Operating Systems i 15 13

Editor: emacs

%+ Base commands available through
» Menu
» Character sequences

= Control commands: control + character (c-key)
= Meta commands: alt + character (m-key)

Documentation

Local help : man emacs

Online resources : http://www.gnu.org/software/emacs/manual/emacs.html
Resources in PDF: http://www.gnu.org/software/emacs/maanual/pdf/emacs.pdf

http://www.gnu.org/software/emacs/manual/emacs.html
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf

A

Operating Systems

Compiler and Debugger

<+ Compiler
» GCC
» G++
> Makefile
» Configure
» Debugger
» GDB

Operating Systems w | 15

Compiler: gcc

% Open-Source GNU project
» gcc compiler and linker
> Supports C and C++

Documentation

Local help : man gcc
Online resources : http://www.gnu.org

%+ Command syntax

» gcc <options> <arguments>

= Options: list of flags that control the compiler and
the linker; there are options for compilation only, for
linker only, or both

= Arguments: list of files that gcc reads and process
depending on the given options

http://www.gnu.org/

Operating Systems 114 16

%+ Compilation of a set of files that produces the
corresponding object files
= gcc — filel.c
= gcc — file2.c
= gCC —C main.c
% Link of the object files produces the executable
file
= gcc —o myexe filel.o file2.0 main.o

%+ Compilation and linking with a single command
= gcc —o0 myexe filel.c file2.c main.c

Operating Systems o, | I
gcc options

“* Most common options
> -C file
= Compilation only
> -0 file
= Specifies the executable name; generally indicates

the name of the final executable (after the link
operation)

> =g
= gcc does not produce optimized code, but inserts
additional information useful for debugging (see
gdb)
> -Wall
= Qutput a warning for all possible code errors

Operating Systems | 18

gcc options

Do not insert spaces

> -Idir
= Specify further directories where searching header
files
= More than one directory can be specified (-Idirl —
Idir2 ...)
> -lm
= Specifies to use the math library
> -Ldir

= Specifies the search directories for pre-existing
libraries to be linked

Operating Systems 15

/ N

gcc -Wall -g -I. -I/myDir/subDir —-o myexe \
myMain.c \
fileLibl.c fileLib2.c filel.c \
file2.c file3.c -1m

%+ Compilation of many source files, followed by
linking and creation of the executable file

» Multi-row command

» Provides “All Warnings”

» Debug option (i.e., do not optimize code9
» Find the header files in two directories

> Links the math library

Operating Systems 20

%+ Support tools for the development of complex
projects

+» Developed since 1998
%+ Made up of utilities

> Makefile

> Make

*»» Provides a convenient tool to automate the
compilation and linker steps

% Help
» man make

First scripting
language used in
this course

Extremely flexible
instrument, but its main
strength is the verification
of dependencies

Operating Systems 1= &I

*» Makefile has two main aims
> Automatically perform repetitive tasks

» Avoid (re)doing unnecessary tasks

= by verifying the file dependencies and
modification times (e.g., re-compile only the
files that have been modified since the previous
make command)

% Two phases
> Write a Makefile file
= A text file similar to a script (shell script or other)
» The Makefile file is interpreted with the make
utility

= This way you can compile and link

Operating Systems i 15 22

Make options

< Make can be executed using different options
» Does not execute, just displays the commands
= -n
» Ignores possible errors and proceeds with the next
commands
= -], --ignore-errors
» Output debug information during the execution
= d
» --debug=[options]
= Options: a = print all info, b = basic info, v =

verbose = basic + other, i = implicit = verbose +
other

Operating Systems ;b 23

Makefile options

% The command make can take as argument a
source file (Makefile), with name different than
standard ones

» The make command executes by default

= the file makefile if it exists

= Or the file Makefile if the file makefile does not exist
> -f <fileName> (or --file <fileName>)

= Allows you to execute the Makefile with name
<fileName>

= make --file <fileName>

= make --file=<fileName>
= make -f <fileName>

Operating Systems ;b 24

Makefile format
Tabulation character

targetzvéépendency
<tab>command

s+ A Makefile includes

» Empty lines
= They are ignored

» Lines starting with "#"
= They are comments, and consequently ignored

> Lines that specify rules
= Each rule specifies a target, some dependencies,
and actions; it can occupy one or more lines

= Very long lines can be splitted by inserting the "\"
character at the end of the line

Operating Systems 17 23

LY

Makefile format

target: dependency]

<tab>command

% When a Makefile is executed (with the command
make)
> The default behavior is to execute the first rule
= j.e., the first target in the file

» If more targets are specified, the desired target
can be passed as an argument to make
" make <targetName>

" make —-f <myMakefile> <targetName>

Operating Systems 17 26

LY

Makefile format

*» A makefile consists of "rules" like this:

<tab>command

target: dependency]

2 Each rule includes

» Target Name
= Usually the name of a file
= Sometimes the name of an action (which is named
"phony" target)
» dependency list that must be verified to execute
the target
» Command, or list of commands

= Each command is preceded by a mandatory TAB
character, invisible but necessary

Operating Systems , 27

Example 1: Single target

target:
<tab>gcc —-Wall -o myExe main.c -1lm

— ————
o Specifies\L Notice: TAB }

> A single target with name target
» The target does not have dependencies
% Executing the Makefile

» The target is executed

» Since the target does not have dependencies, the
execution of the target corresponds to the
execution of the compilation command

Operating Systems 28

Example 2: Multiple targets

(projectlz
<tab>gcc -Wall -o projectl myFilel.c

project2:
<tab>gcc -Wall -o project2 myFile2.c

% The Makefile specifies more rules
» Need to choose which is the target to execute

> The default consists in the execution of the first
target

% Executing the command
» make
= The target projectl is executed

» make -f project2
= The target project2 is executed

Operating Systems)

Example 3: Multiple targets and actions

/target:
<tab>gcc -Wall -o my \
<tab> main.c \
<tab> bst.c list.c queue.c stack.c
<tab>cp my /home/myuser/bin

~
(Comnmndon
. more rows

clean:

L <tab>rm -rf *.o *.txt)

% Specify more rules
» Rules have no dependencies

» The first target executes two commands (gcc and
cp)
= This first target is executed with the commands
e make
e make -f target

Operating Systems 30

Example 3: Multiple targets and actions

/target:
<tab>gcc -Wall -o my \
<tab> main.c \
<tab> bst.c list.c queue.c stack.c
<tab>cp my /home/myuser/bin

~
(Comnmndon
5 more rows

clean:
<tab>rm -rf *.o *.txt

-

» The second target removes all the files with
extension .0 and all the files with extension .txt

= This second target is executed with the command
e make -f clean

Operating Systems

31

|

P
target: filel.o file2.o0

<tab>gcc -Wall -o myExe filel.o file2.o0

filel.o: filel.c myLibl.h
<tab>gcc -Wall -g -I./dirI -c filel.c

file2.0: file2.c myLibl.h myLIb2.h
<tab>gcc -Wall -g -I./dirI -c file2.c

(&

<+ Execution of multiple targets in the presence of
dependencies

> It checks if target dependencies are more recent
than the current target

> In this case, dependencies are performed before
the execution of the current target

> This process iterates recursively

Operating Systems 3z

|

C N
target: filel.o file2.o0

<tab>gcc -Wall -o myExe filel.o file2.o0

filel.o: filel.c myLibl.h
<tab>gcc -Wall -g -I./dirI -c filel.c

file2.0: file2.c myLibl.h myLIb2.h

<tab>gcc -Wall -g -I./dirI -c file2.c
A J

< Target has filel.o and file2.0 as dependencies

> rule filel.0 is checked

= If filel.c (or myLibl.h) is more recent than filel.o,
this rule (i.e., the gcc command) is executed

= QOtherwise this rule is not executed
> The same is done for the file2.0 rule
> At the end the target is executed if necessary

Operating Sy atamma 33

Action name
("phony" target)

C N

target: filel.o file2.o0
<tab>gcc -Wall -o myExe filel.o file2.o

File name

file2.0: file2.c myLibl.h myLIb2.h
<tab>gcc -Wall -g -I./dirI -c file2.c

A J
< If the target is not a file name, it is a "phony"

target that should always be executed

% To be sure that is always executed
» .PHONY : target

Regardless the existence of a file with the same
name and more recent than dependencies

Operating Systems Ny 34

Implicit rules and modularity

% There exist very powerful rules for improving
modularity and make more efficient the writing of
makefiles

» Use of macros

> Use of implicit rules
= The dependence between .0 and .c is automatic
= The dependence between .c and .h is automatic

= Recursive dependencies are analyzed automatically
= etc.

Operating Systems 35

Example 5: Macro
p
CC=gcc //Definition of macro:

FLAGCS=-Wall -g macro=name
SRC=main.c bst.c list.c util.c | (with or without spaces)

project: $(SRC)
<tab>$ (CC) $(FLAGS)-o project $(SRC) -1lm

(S AN g N
Use of the macro:
L$(macro)
+» Macro allows to define
» Symbols
= Compilers, compilation flags, etc.
> Lists

= Obiject files, executables, directories, etc.

Operating Systems 36

|

a N
CC=gcc The macro $ copies the
FLAGCS=-Wall -g list of files reported in the
SDIR=source list of dependencies
HDIR=header The macro $@

ODIR=0b] copies the current

"target name"

project: $(ODIR)/main.o $(ODIR)/bst.o
<tab>$ (CC) $(FLAGS)-o $@ $~

$ (ODIR) /main.o: $(SDIR)/main.c $(HDIR)/main.h
<tab>$ (CC) $(FLAGS) -c $~

S (ODIR) /bst.o: $(SDIR)/bst.c $(HDIR)/bst.h
<tab>3(CC) $(FLAGS) -c 8% The macro $< would copy the

\ first file reported in the list of
dependencies

Operating Systems 37

Debugger: gdb

%+ Software package used to analyze the behavior
of another program in order to identify and
eliminate errors (bugs)

%+ GNU debugger gdb is available for almost all
Operating Systems

< It can be used

> As a "stand-alone" tool
= Particularly inconvenient use

» Integrated with many editors (e.g., emacs)
» Embedded in some graphical IDE

» Abbreviate form of commands can be given

Operating Systems

Action
Execution commands

Breakpoint commands

38

Debugger: gdb

Command

run (r)

next (n)

next <NumberOfSteps>
step (s)

step <NumberOfSteps>
stepi (si)

finish (f)

continue (c)

info break

break (b), ctri-x-blank
break LineNumber

break FunctionName

break fileName:LineNumber
disable BreakpointNumber
enable BreakpointNumber

Operating Systems

Action
Print commands

Stack operations

Code listing commands

Miscellaneous commands

39

Debugger: gdb

Command

print (p)
print expression

display expression

down (d)
up (u)
Info args
Info locals

list (p)
list LineNumber

list FirstLine, LastLine

file fileName
exec filename
kill

http://darkdust.net/files/GDB%20Cheat%?20Sheet.pdf

