Processes

Introduction to Linux processes
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

Operating Systems 1= 2

Algorithms, Programs, and Processes

%+ Algorithm
> Logical process which, in a finite number of steps,
allows the resolution of a problem

“* Program
» Formalization of an algorithm by means of a
programming language
> Passive entity, i.e., file (executable) in the hard
disk
“* Process
» Abstraction of a running program

» Active entity

= Sequence of operations performed by a program
running on a given set of data

Operating Systems 1= S

Sequential and concurrent processes

_ : Sequential e
%+ Sequential execution actions
> Actions are executed one after the other

= A new action begins only after the e
termination of the previous one

= They are totally ordered
» Deterministic behavior

= Given the same input, the output

produced is always the same, it does not
depend on

Input,
e The time of execution Processing
e The speed of execution Output

e The number of active processes on the
same system

Operating Systems 7 2

Input,
Processing
Output

*+ Concurrent execution
> More than one action can be
executed at the same time
= There is not order relation
= Non deterministic behavior
» Real concurrency

= on multi-processor or multi-
core systems

» Pseudo-concurrency
= 0N MONO-processor systems

[Concurrent actions

Operating Systems <l § AL 5

Processes

% Several processes are started at bootstrap

terminated at shut-down.
Execute support activities.

» Automatic
Daemon Processes
E-mail applications
Various control activities, virus scan and others

(Started at bootstrap, }

» On user request
= Line printer management
= WEB server (with parallel requests for outside)

Operating Systems Ny 6

Processes

* Process identity and process control
= ID & system calls: pid, getpid, getppid, etc.

+¢» Process creation

= The creating process is called the parent process,
the process created is called the child process

= Tt is possible to create a process tree.
= System calls: fork, exec, system, etc.

%+ Process synchronization and termination
= System calls: wait, waitpid, exit.

Operating Systems 17> 4

Process identifier

% Every process has a unique identifier
» PID or Process Identifier

% The PID is a non negative integer

» Although a PID is unique, UNIX reuses the
numbers of terminated processes.

» PID can be used by concurrent processes for
creating unique objects, or temporary filenames
= For example :
sprintf (filename, "file-%d" getpid())
creates a different process-dependent filename

Operating Systems 1= 8

Process identification

+» Some identifiers are reserved

» The first process, PID=0, is a system process

= The swapper, which is responsible for memory
management and process scheduling

= Executed at the kernel level

» The second process, PID=1, is init a daemon
= invoked at the end of the bootstrap
= executed at user level
= with super-user privileges
= Becomes the parent of each orphan process, i.e., of
a child of a parent process already terminated

AN

Recent OS: "jobs started are not reparented to PID1
(init), but to a custom init -user, owned by the same user of the process ..."

Operating Systems 9

|

" #include <unistd.h> A
pid t getpid(); // Process ID
pid t getppid(); // Parent Process ID
uid t getuid(); // Real user ID
uid t geteuid() ; // Effective ID (the one of sudo cmd)
gid t getgid(); // Real group ID

. gid_t getegid(); // Effective group ID P

% In addition to the PID, there are other identifiers
related to a process

< getpid returns the identifier of the calling
process

< getppid returns the identifier of the parent

Process There is no system call to obtain the PID of a child

Operating Systems 1= 10

Process creation

% System call £ork () creates a new child process

» The child is a copy of the parent excluding the
Process ID (PID) returned by fork

= The parent process receives the child PID

e A process may have more than one child that can
identify on the basis of its PID

= The child process receives the value 0
e It can identify its parent by means of the system call
getppid
» fork isissued once in the parent process, but
returns in two different processes, and returns
different values to the parent, and to the child.

Operating Systems 1= 11

Process creation

4)

#include <unistd.h>
%(\ Variants: vfork, rfork, clone J
pid t fork (void);

~ J

*» Returned values
> If fork returns without error
= Child PID in the parent process
= Zero in the child process
» Fork returns -1 in case of error

= Normally because a limit on the number of allowed
process has been reached

Operating Systems 12

Process creation

/#include <unistd.h> N Process
T arent
pid t pid; (p)
éié = fork();
switch (pid) ({ s

case -1: ::::i>
// Fork failure \\\5‘
S (1) ;

case 0O:
// child

default:
// Parent _
.- Parent _ Child |

} continues execution continues execution
pid = child PID pid=20

Operating Systems 7 13

Process creation

(0

#include <unistd.h>
pid t pid;
pid = fork() ; §@
if (pid>0) {

// Parent \

}.élse {
// Child

Process
(parent)

i..

Child
continues execution
pid =0

T . Parent
continues execution
_ pid = child PID

Operating Systems 17~ 14

V¥

Address space

Parent child
e) ~
Code [Code
- < | fork)
Data Current
. J data values |
- pcB | e |

> Parent and child share their code, but they have
a different PCB

» They also share the value of the data at the
time of fork.

» Parent and child may then change the data
values independently

Operating Systems 3]

s+ Write a concurrent C program that allows
» Creating a child process
» Terminating the parent process before the child

Process
» Or terminating the child process before the parent
process The system call
unsigned int sleep (unsigned int sec)
places the process in wait for (at least) sec seconds

< Output in both cases the Process Identifier of the
terminating process and the Process Identifier of
its parent.

[Who is the parent’s parent?

Who is the child’s parent if the
parent terminates before the child?

Operating Systems 16

|

//* tC = atoi (argv[l]);
#include <unistd.h> tP = atoi (argv([2]);
printf ("Main ")

printf ("PID=%d; My parent PID=%d\n",
getpid() , getppid());

pid = fork() ;

if (pid == 0) { Child
sleep (tC);
printf ("Child : PIDreturned=% ", pid);
printf ("PID=%d; My parent PID=%d\n",
getpid() , getppid())
} else { Parent

sleep (tP);

printf ("Parent: PIDreturned=%d ", pid);

printf ("PID=%d; My parent PID=%d\n",
getpid() , getppid())

\ %

Operating Systems

17

|

> ps

PID TTY TIME CMD 1

Shell status
(ps: prints process status)

2088 pts/10 00:00:00 bash
2760 pts/10 00:00:00 ps Child waits 2 secs

Parent waits 5 secs

Ve

A

> ./u04s01e03-fork 2 5
Main :
Child : PIDreturned=0

PID=2813; My parent PID=2088
PID=2814; My parent PID=2813

Parent: PIDreturned=2814 PID=2813; My parent PID=2088

Notice increasing
PID values

Child waits 5 secs
parent waits 2 secs

> ./u04s0le03-fork 5 2
Main

PID=2815; My parent PID=2088

Parent: PIDreturned=2816 PID=2815; My parent PID=2088

> Child : PIDreturned=0

PID=2816; My parent PID=1

init process PID

Operating Systems 18

% Given the following program, draw its
» Control Flow Graph, CFG
» Process generation graph

C N

int main () {
/* fork a child process */
fork () ;

/* fork another child process */
fork () ;

/* fork a last one */
fork() ;

Operating Systems

o

int main ()
fork ()
fork ()
fork ()

}

(&

{

// 1
// 2
// 3

19

Control Flow Graph
(CFG)

|

Operating Systems

o

int main () {
fork (); // 1
fork (); // 2
fork (); // 3
}

(&

20

Operating Systems 21

% Given the following program, draw its
» Control Flow Graph, CFG
» Process generation graph

C N

pid = fork (); /* call #1 */

if (pid '= 0)
fork (); /* call #2 */

fork (); /* call #3 */

- /

22

Operating Systems — “i(o

(pid = fork (); // 1)

if (pid '= 0) Control Flow Graph
fork () // 2 (CFG)

fork () // 3

.

Process generation tree]

Operating Systems 23

% Given the following program, draw its
» Control Flow Graph, CFG
» Process generation graph

C N

pid = fork() /* call #1 */
fork () ; /* call #2 */

if (pid !'= 0)
fork () ; /* call #3 */

Operating Systems - iI »o 24

I;;gki) fork/(/) 2 A0 Control Flow Graph J
if (pid !'= 0) (CFG)
fork () ; // 3

Process generation tree J

Operating Systems 23

% Given the following program, draw its
» Control Flow Graph, CFG
» Process generation graph

a Y
#include <stdio.h> fflush (stdout);
or
int main () { setbuf (stdout, 0);
int 1;

for (i=0; i<2; i++) {
printf("i: %d \n", 1i);
if (fork()) /* call #1 */
fork(); /* call #2 */

Operating Systems — ;I if > 26

4 A Control Flow Graph
for (i=0; i<2; i++) { [(CFG)
printf("i: %d \n", 1i);
if (fork()) // 1
fork(); // 2

[Possible output : 0111]

i=0

P C4 C3 C2 C21 C22 Cl ClZ Cll

Operating Systems 1= 2L

4)\
for (i=0; i<2; i++) {
printf("i: %d \n", 1i);
if (fork()) // 1
fork(); // 2

Process generation tree }

[Possible output : 0111]

Operating Systems

28

|

< Given the following program, report the output
and the process generation tree

N

int main() {
int a, b=5, c;

a = fork(); /* #1 */
if (a) {
a = b; ¢ = split(a, b++);
} else {
fork(); /* #2 */
c = a++; b += c;
}
if (b > ¢c) {
fork(); /* #3 */

}
printf ("%$3d", a+b+c);

return 0;

e

}

AN

N

int split(int a, int b) {

a++;
a = fork();
if (a) {
a =b;
} else {
if (fork()) /* #5 */ {
a--;
b += a;
}
}

return a+b;

/* #4 */

Operating Systems . “i(o 29

a b C a+b+c
@ @ 5 6 10 21
C1 1 5 0 6
C2 5 6 3 14
@ @ @ @ Cl1 1 5 0 6
C12 1 5 0 6
C21 5 6 5 16
@ @ C22 5 6 3 14
C111 1 5 0 6
C211 5 6 5 16

o

Operating Systems — 'I - 30

<+ Write a concurrent program that
» Given n as its argument
» Generates n children processes

%+ Each child process outputs its PID and terminates

Operating Systems

-

1

s
£

}

Ke

nt i, n;

canf ("%d", é&n);
or (i=0; i<n; i++) {
fork () ;
printf ("Proc %d (PID=%d)\n",
i, getpid());

xit (0);

31

Operating Systems 32

Erroneous solution 1

/int i, n; A : :
Possible output with }
scanf ("%d", é&n); n=3
for (i=0; i<n; i++) {
fork () ;
rintf ("Proc %d (PID=%d)\n",
i i, ge’épid()); | ! “proc 0 (PID-3188) |
} Proc 1 (PID=3188)
P Proc 2 (PID=3188)
. 1 Proc 2 (PID=3191)
(exit (0); - Proc 1 (PID=3190)
{Control Flow GraphL E:gg (2) Egig=§%ggg
(87 Proc 1 (PID=3189)
Proc 2 (PID=3189)
Proc 2 (PID=3192)
Proc 2 (PID=3194)
Proc 1 (PID=3193)
Proc 2 (PID=3193)
Proc 2 (PID=3195)

P C3 C2 C21 Cl C12 C11 Clll

Operating Systems 7 33

Erroneous solution 1

3 D

int i, n;

Process tree with }
scanf (“%d”, &n); n=3
for (i=0; i<n; i++) {
fork () ;
printf (“Proc %d (PID=%d)\n",
i, getpid())

}

exit (0);

-)

4)
Generates 7 children processes e
(in addition to the initial one)

Solution 1 is

” (e
L erroneous)

Operating Systems 34

//;nt i, n; \\

scanf ("%d", é&n);
printf ("Start PID=%d\n",
getpid()) ;
for (i=0; i<n; i++) {
if (fork() == 0) {
printf ("Proc %d (PID=%d)\n",
i, getpid());
break;

}

}
printf ("End PID=%d (PPID=%d)\n",
getpid() , getppid())

\\fxit(O); //

Operating Systems

35

|

4 4

scanf ("%d", é&n);
printf ("Start PID=%d\n",
getpid()) ;
for (i=0; i<n; i++) {
if (fork() == 0) {
printf ("Proc %d (PID=%d)\n",
i, getpid());
break;
}
}
printf ("End PID=%d (PPID=%d)\n",
getpid() , getppid())

\\?xit(O);

Process tree and
output with n=3

//;nt i, n; \\

a N

> ps
PID TTY TIME CMD
088 pts/10 00:00:00 bash

> ./u04s0le06-fork
Start PID=3225

End PID=3225 (PPID=2088)
Proc 2 (PID=3228)

End PID=3228 (PPID=1314)
Proc 1 (PID=3227)

End PID=3227 (PPID=1314)
Proc 0 (PID=3226)

End PID=3226 (PPID=1314)

(&

Operating Systems i (a5 36

Resources

% The child process is a new entry in the Process
Table

< The process resources can be

» Completely shared among parent and children
processes

= Same address space
> Partially shared

= Address spaces partially overlapped
» Non shared

= Separate address spaces

Operating Systems i (a5 37

Resources

< In UNIX/Linux parent and child share
» The source code (C)

» The open file descriptors (File Description Table)
= In particular, stdin, stdout, and stderr

e Concurrent I/O operation implies producing interlaced
I/0

» User ID (UID), Group ID (GID), etc.

» The root and the working directory

» System resources and their utilization limits
» Signal Table

> Etc.

Operating Systems oo 38

Resources

< In UNIX/Linux parent and child have different
» Return fork value

» PID
= The parent keeps its PID
= The child gets a new PID

» Data, heap and stack space

= The initial value of the variables is inherited, but
the spaces are completely separated
= copy-on-write technique is used by modern OSs

e New memory is allocated only when one of the
processes changes the content of a variable

Operating Systems 39

|

//;har c, str[1l0]; \\

c = 'X';
if (fork()) {
// parent (!=0)
c = "F';
strcpy (str, "parent");
sleep (5);
} else {
// child (==0)
strcpy (str, "child");

}
fprintf (stdout, "PID=%d; PPID=%d; c=%c; str=%s\n",
_ getpid() , getppid(), ¢, str); Y
Output

PID=2777; PPID=2776; c=X; str=child
PID=2776; PPID=2446; c=F; str=parent

Operating Systems 1= 40

Process termination

% Five standard methods for process termination
> return from main ()
> exit system call
> exit or Exit
= Synonyms defined in ISO C or POSIX

= Similar effects of exit, but different management
of stdio flushing etc.

» return from main () of the last process thread
> pthread exit from the last process thread

Operating Systems I 41

Process termination

%+ Three not-normal method for process termination
> Call of the function abort

= (Generates the signal SIGABORT, this is a sub-case
of the next because a signal is generated

> If a termination signal, or a signal not caught is
received

> If the last thread of a process is cancelled

42

Il wait () and waitpid ()

Operating Systems

System ca

<+ When a process terminates (normally or not)
» The kernel sends a signal (SIGCHLD) to its parent
» For the parent this is an asynchronous event

> The parent process may

= Manage the child termination (and/or the signal)
e Asynchronously
e Synchronously

= Ignore the event (default)

Operating Systems 1= 43

System call wait () and waitpid ()

+ A parent process can manage child termination

» Asynchronously: using a signal handler for signal
SIGCHLD

= This approach will be introduced in the section
devoted to signals

» Synchronously: by means of system calls

= wait

= waitpid /
ﬁ wait (waitpid)

Operating Systems 7 44

System call wait ()

4)

#include <sys/wait.h>

pid t wait (int *statLoc);

. J

% A call of the system call wait by means of a
Process
» Returns an error if the calling process has not
children
= A process without children is not supposed to do a
wait
= In this case the returned value is -1

Operating Systems 114 45

System call wait ()

4)

#include <sys/wait.h>

pid t wait (int *statLoc);

. J

% A call of the system call wait by means of a
process
> Blocks the calling process if all its children are
running (none is already terminated)

= wait will return as soon as one of its children
terminates

Operating Systems 46

System call wait ()

4)

#include <sys/wait.h>

pid t wait (int *statLoc);

& J

% A call of the system call wait by means of a
process

» Returns to the process (immediately) the
termination status of a child, if at least one of the
children has ended (and it is waiting for his
termination status to be recovered)

= When a process ends and the parent does not do a
wait, its termination status remains pending

= Some resources associated with the process remain
blocked

Operating Systems 17 47

LY

System call wait ()

4)

#include <sys/wait.h>

pid t wait (int *statLoc);

. J

< The statLoc parameter _——— Exit status of the child |

L process

J

» Is an integer pointer
= If not NULL collects the exit value of the child
» The status information are
= Implementation dependent

= Recovered using macros defined in <sys/wait.h>
(WIFEXITED, WIFSIGNALED, etc.)

Operating Systems 17 48

K

System call wait ()

4)

#include <sys/wait.h>

pid t wait (int *statLoc);

. J

= WIFEXITED(statLoc) is true if wait terminates
correctly. In this case WEXITSTATUS(statLoc)
catches the 8 LSBs of the parameter passed to a exit
(_exit or _Exit)

+»» Returned values

» The PID of a terminated child on success
» -1 on error

Operating Systems 49

(N

pid t pid, childPid;
int statVal;

pid = fork();

if (pid==0) {
// Child
sleep (5);
exit (6);

} else {

(U)

Operating Systems 50

|

L

// Parent

childPid = wait (&statVval) ;

printf ("Child terminated: PID = %d\n", childPid);
if (WIFEXITED (statVal))

}

exit (25);

§

// WIFEXITED: True if correctly terminated
// WEXITSTATUS: Takes the 8 returned LSBs (exit)
printf ("Exit value: %d\n",

WEXITSTATUS (statVal)); Prints 6

else
printf ("Abnormal termination\n");

echo $?
(in a shell) prints 25 //

Operating Systems L 188 51

LY

Zombie processes

%+ A child process terminated, whose parent is
running, but has not executed wait is in the
zombie state

» The data segment of the process remains in the

process table because the parent could need the
child exit status

» The child entry is removed only when the parent
executes wait
= Many zombie processes may remain in the system if

one or more parents do not execute their wait
system call.

Operating Systems oA

Zombie processes

% It the parent process terminates (without
executing wait, and the child is still running, the
latter is inherited by init the process (PID=1).

The child does not become zombie because th

system knows that no one is waiting for its
exit status.

Remember that in recent OS: "jobs started are not reparented to PID1
(init), but to a custom init -user, owned by the same user of the process ..."

Operating Systems 99

System call waitpid ()

% To use wait for a specific child, you need to
» Control the PID of the terminated child

» Possibly store the PID of the terminated child in
the list of terminated child processes (for future
checks/searches)

» Make another wait until the desired child is
terminated
% If a parent needs to wait a specific child it is
better to use waitpid, which

» suspends execution of the calling process until a
child, specified by pid argument, has changed
state

» waitpid() has a not blocking form (not default)

Operating Systems 54

System call waitpid ()

~

" #include <sys/wait.h>

pid t waitpid (
pid t pid,
int *statLoc,
int options) ;

S

%+ The parameter pid allows waiting for

> Any child (waitpid==wait) (pid = -1)

» The child whose PID=pid (pid > 0)

» Any child whose GID is equal to that of the calling
process (pid = 0)

» Any child whose GID=abs(pid) (pid < -1)

Operating Systems 99

System call waitpid ()

~

" #include <sys/wait.h>

pid t waitpid (
pid_t pid,
int *statLoc,

. int options); y

% The options parameter allow additional controls

» Default is 0, or is a bitwise OR of constants

= WNOHANG, if the child specified by PID is running,
the caller does not block (not blocking version of
wait)

= WCONTINUED and WUNTRACED allow to know the
status of a child in particular conditions

Operating Systems — ;I o 56

% Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

Si represents a
generic statement

Operating Systems w | L

% Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

fork

fork

Operating Systems

p

int main() {

pid_t pid;

printf ("S1l\n");

pid = fork ()

if (pid == 0) {
//sleep (2);
printf ("S3\n");
exit (0);

printf ("S2\n");
wait ((int *) O0);

\ Returned PID ignored]

} else { 4 Parent
//sleep (2);

Termination state
ignored

|

Operating Systems

—

printf ("S4\n");

pid = fork();

if (pid == 0) {
//sleep (2);
printf ("S6\n");
exit (0);

} else {
//sleep (2);
printf ("S5\n");
wait ((int *) 0);

}

printf ("S7\n");

return (0);

Operating Systems — ;I if > 60

% Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

Operating Systems 1= 61

% Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

fork

Operating Systems 62

int main () {
pid t pid;
printf ("S1\n"); @ @
if ((pid = fork())==-1)
err sys("can't fork");
if (pid == 0){ (s4) (s5) (s6)
P356 () ;
} else {
printf ("S2\n"); @
printf ("S4\n");
while (wait((int *)0)!'= pid);
printf ("S7\n");

exit (0);
} Check on different terminations
return (1); (useless in this case and
} replaceable with waitpid)

L >

Operating Systems

p

P356() {
pid t pid;
printf ("S3\n");
if ((pid = fork()) == -1)

err sys("can't fork");
if (pid > 0) {
printf ("S5\n");
while (wait((int *)O0) !'=pid);
} else {
printf ("S6\n");
exit (0);
}
exit (0);

63

Operating Systems 1= 64

s+ Write a program that
» Takes as argument an integer value n

> Allocates dynamically an integer vector of
dimension n

> Fills the vector with values reads from the terminal

> Displays the vector content, from the last to the
first element, using n-1 processes, each displaying
a single element of the vector

> Hint

= Synchronize the processes by means of wait
system calls, in order to establish the order of
display of the elements of the vector

Operating Systems

65

|

p

int main(int argc,
int i, n, *vet;
int retValue;
pid t pid;

if (vet==NULL) {
exit (1),

}
fprintf (stdout,

char *argv[]) {

n = atoi (argv([l]);
vet = (int *) malloc (n * sizeof (int));

fprintf (stderr, "Allocation Error.\n");

"Input:\n");

for (i=0; i<n; i++) {
fprintf (stdout, "vet[%d]:", 1i);
scanf ("%d", &vet[i])

Operating Systems

66

|

p

Syt

fprintf (stdout, "Output:\n");
for (i=0; i<n-1; i++) {
pid = fork()
if (pid>0) {
pid = wait (&retValue);
break;

}
fprintf (stdout, "Run PID=%d\n", getpid())

}

fprintf (stdout, "vet[%d]:%d - ", i, vet[i]);
fprintf (stdout, "End PID=%d\n", getpid()):;

exit (0);

Operating Systems

%+ Implement this Control Flow
Graph (CFG) by means of
the system calls fork and
wait

67

Operating Systems 68

C N

main () {
S20 ()
pid = fork ()
if (pid>0) {
P1 ()’
wait ((int *)O0);
} else {
P2 ();
}
S25 ();
return;

Operating Systems

69

e

P1() {
S11 ()

pid = fork ()
if (pid>0) {
S12 ()
wait((int *)O0);
} else {
??2? To P2 ?2°?7?;
exit (0) ;
}
S13 (),

Operating Systems 70

4 N
P2 () {

pid = fork (),

if (pid>0) {
S21 ()
??? From S1 ?°?°7?;
S23 ()
wait((int *)0);

} else {
S22 ();
exit(0) ;

}

s24 () ;

exit (0);

}
\\

Operating Systems

71

Unfeasible
Pl ™ a
0O { graph =
S11 () _
pid = fork (); pid = fork ();
if (pid>0) { if (pid>0) {
S12 (); S21 ();
wait ((int *)O0) ; ??? From S1 ?°?7?;
} else { P 2 823 ();
??? To P2 ?7?p; wait ((int *)0);
exit(0) ; else {
} S22 ();
S13 (); exit (0) ;
- S24 ();
exit (0);
}

_

