
Processes

Introduction to Linux processes
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Algorithms, Programs, and Processes

 Algorithm

 Logical process which, in a finite number of steps,
allows the resolution of a problem

 Program

 Formalization of an algorithm by means of a
programming language

 Passive entity, i.e., file (executable) in the hard
disk

 Process

 Abstraction of a running program

 Active entity

 Sequence of operations performed by a program
running on a given set of data

3Operating Systems

Sequential and concurrent processes

 Sequential execution

 Actions are executed one after the other

 A new action begins only after the
termination of the previous one

 They are totally ordered

 Deterministic behavior

 Given the same input, the output
produced is always the same, it does not
depend on

● The time of execution

● The speed of execution

● The number of active processes on the
same system

I1

P1

O1

I2

P2

O2

Sequential
actions

Input,
Processing

Output

4Operating Systems

Concurrent actions

 Concurrent execution

 More than one action can be
executed at the same time

 There is not order relation

 Non deterministic behavior

 Real concurrency

 on multi-processor or multi-
core systems

 Pseudo-concurrency

 on mono-processor systems

I1

I2

I3

I4

I5

I6

P1

P2

P3

P4

P5

O1

O2

O3

I4

Input,
Processing

Output

Sequential and concurrent processes

5Operating Systems

 Several processes are started at bootstrap

 Automatic

 Daemon Processes

 E-mail applications

 Various control activities, virus scan and others

 …

 On user request

 Line printer management

 WEB server (with parallel requests for outside)

 …

Processes

Started at bootstrap,
terminated at shut-down.
Execute support activities.

6Operating Systems

 Process identity and process control
 ID & system calls: pid, getpid, getppid, etc.

 Process creation

 The creating process is called the parent process,
the process created is called the child process

 It is possible to create a process tree.

 System calls: fork, exec, system, etc.

 Process synchronization and termination
 System calls: wait, waitpid, exit.

Processes

7Operating Systems

 Every process has a unique identifier

 PID or Process Identifier

 The PID is a non negative integer

 Although a PID is unique, UNIX reuses the
numbers of terminated processes.

 PID can be used by concurrent processes for
creating unique objects, or temporary filenames

 For example :

sprintf(filename, "file-%d" getpid());

creates a different process-dependent filename

Process identifier

8Operating Systems

 Some identifiers are reserved

 The first process, PID=0, is a system process

 The swapper, which is responsible for memory
management and process scheduling

 Executed at the kernel level

 The second process, PID=1, is init a daemon

 invoked at the end of the bootstrap

 executed at user level

 with super-user privileges

 Becomes the parent of each orphan process, i.e., of
a child of a parent process already terminated

Process identification

Recent OS: "jobs started are not reparented to PID1
(init), but to a custom init -user, owned by the same user of the process …"

9Operating Systems

Process identification

 In addition to the PID, there are other identifiers
related to a process

 getpid returns the identifier of the calling
process

 getppid returns the identifier of the parent
process

#include <unistd.h>

pid_t getpid(); // Process ID

pid_t getppid(); // Parent Process ID

uid_t getuid(); // Real user ID

uid_t geteuid(); // Effective ID (the one of sudo cmd)

gid_t getgid(); // Real group ID

gid_t getegid(); // Effective group ID

There is no system call to obtain the PID of a child

10Operating Systems

Process creation

 System call fork()creates a new child process

 The child is a copy of the parent excluding the
Process ID (PID) returned by fork

 The parent process receives the child PID

● A process may have more than one child that can
identify on the basis of its PID

 The child process receives the value 0

● It can identify its parent by means of the system call
getppid

 fork is issued once in the parent process, but

returns in two different processes, and returns
different values to the parent, and to the child.

11Operating Systems

 Returned values

 If fork returns without error

 Child PID in the parent process

 Zero in the child process

 Fork returns -1 in case of error

 Normally because a limit on the number of allowed
process has been reached

#include <unistd.h>

pid_t fork (void);

Process creation

Variants: vfork, rfork, clone

12Operating Systems

#include <unistd.h>

...

pid_t pid;

...

pid = fork();

switch (pid) {

case -1:

// Fork failure

...

exit (1);

case 0:

// Child

...

default:

// Parent

...

}

...

Parent
continues execution

pid = child PID

Child
continues execution

pid = 0

Process
(parent)

Process creation

13Operating Systems

#include <unistd.h>

...

pid_t pid;

...

pid = fork();

if (pid>0) {

// Parent

...

} else {

// Child

...

}

...

}

...

Process creation

Parent
continues execution

pid = child PID

Child
continues execution

pid = 0

Process
(parent)

14Operating Systems

fork

Code

Parent

PCB

Data

Code

Child

PCB

Current
data values

Address space

 Parent and child share their code, but they have
a different PCB

 They also share the value of the data at the
time of fork.

 Parent and child may then change the data
values independently

15Operating Systems

 Write a concurrent C program that allows

 Creating a child process

 Terminating the parent process before the child
process

 Or terminating the child process before the parent
process

 Output in both cases the Process Identifier of the
terminating process and the Process Identifier of
its parent.

Example

The system call
unsigned int sleep (unsigned int sec)

places the process in wait for (at least) sec seconds

Who is the child’s parent if the
parent terminates before the child?

Who is the parent’s parent?

16Operating Systems

#include <unistd.h>

...

printf ("Main : ");

printf ("PID=%d; My parent PID=%d\n",

getpid(), getppid());

...

pid = fork();

if (pid == 0) {

sleep (tC);

printf ("Child : PIDreturned=%d ", pid);

printf ("PID=%d; My parent PID=%d\n",

getpid(), getppid());

} else {

sleep (tP);

printf ("Parent: PIDreturned=%d ", pid);

printf ("PID=%d; My parent PID=%d\n",

getpid(), getppid());

}

tC = atoi (argv[1]);

tP = atoi (argv[2]);

Parent

Child

Example

17Operating Systems

> ps

PID TTY TIME CMD

2088 pts/10 00:00:00 bash

2760 pts/10 00:00:00 ps

> ./u04s01e03-fork 2 5

Main : PID=2813; My parent PID=2088

Child : PIDreturned=0 PID=2814; My parent PID=2813

Parent: PIDreturned=2814 PID=2813; My parent PID=2088

> ./u04s01e03-fork 5 2

Main : PID=2815; My parent PID=2088

Parent: PIDreturned=2816 PID=2815; My parent PID=2088

> Child : PIDreturned=0 PID=2816; My parent PID=1

Shell status
(ps: prints process status)

Child waits 2 secs
Parent waits 5 secs

Child waits 5 secs
parent waits 2 secs

Notice increasing
PID values

init process PID

Example

18Operating Systems

Exercise

 Given the following program, draw its

 Control Flow Graph, CFG

 Process generation graph

int main () {

/* fork a child process */

fork();

/* fork another child process */

fork();

/* fork a last one */

fork();

}

19Operating Systems

Solution

int main () {

fork (); // 1

fork (); // 2

fork (); // 3

}
P

P

P

P C1

C2C3

C2

C21

C11C1

C111C11C12C1

Control Flow Graph
(CFG)

1

3

2 2

333

20Operating Systems

Solution

C1

C12C11

C111

P

C2

C21

C3

int main () {

fork (); // 1

fork (); // 2

fork (); // 3

}

Process generation tree

21Operating Systems

pid = fork (); /* call #1 */

if (pid != 0)

fork (); /* call #2 */

fork (); /* call #3 */

Exercise

 Given the following program, draw its

 Control Flow Graph, CFG

 Process generation graph

22Operating Systems

Solution

pid = fork (); // 1

if (pid != 0)

fork (); // 2

fork (); // 3

C1

C11

P

C2

C21

C3

Control Flow Graph
(CFG)

Process generation tree
P

P

P

P C1

C2C3

C2

C21 C11C1

1

3

2

33

23Operating Systems

pid = fork() /* call #1 */

fork(); /* call #2 */

if (pid != 0)

fork(); /* call #3 */

Exercise

 Given the following program, draw its

 Control Flow Graph, CFG

 Process generation graph

24Operating Systems

Solution

C1

C11

P

C2

C21

C3

pid = fork() // 1

fork(); // 2

if (pid != 0)

fork(); // 3

Control Flow Graph
(CFG)

Process generation tree

P

P

P

P C1

C2C3

C2

C21

C11C1

1

3

2 2

3

25Operating Systems

#include <stdio.h>

int main () {

int i;

for (i=0; i<2; i++) {

printf("i: %d \n", i);

if (fork()) /* call #1 */

fork(); /* call #2 */

}

}

Exercise

 Given the following program, draw its

 Control Flow Graph, CFG

 Process generation graph

fflush (stdout);
or

setbuf (stdout, 0);

26Operating Systems

Solution

for (i=0; i<2; i++) {

printf("i: %d \n", i);

if (fork()) // 1

fork(); // 2

}

Control Flow Graph
(CFG)

Possible output : 0 1 1 1

P

P

P

P C1

C4

C2

1

i=0

i=1

P C3

C2

C2 C21 C22

C1

C1 C12 C11

27Operating Systems

Solution

for (i=0; i<2; i++) {

printf("i: %d \n", i);

if (fork()) // 1

fork(); // 2

}

C1

C12C11

P

C3 C4C2

C22C21

Possible output : 0 1 1 1

Process generation tree

28Operating Systems

Exercise

 Given the following program, report the output
and the process generation tree

int main() {

int a, b=5, c;

a = fork(); /* #1 */

if (a) {

a = b; c = split(a, b++);

} else {

fork(); /* #2 */

c = a++; b += c;

}

if (b > c) {

fork(); /* #3 */

}

printf("%3d", a+b+c);

return 0;

}

int split(int a, int b) {

a++;

a = fork(); /* #4 */

if (a) {

a = b;

} else {

if (fork()) /* #5 */ {

a--;

b += a;

}

}

return a+b;

}

29Operating Systems

Solution

C1

C12C11

P

C111

C2

C22C21

C211

P a b c a+b+c

P 5 6 10 21

C1 1 5 0 6

C2 5 6 3 14

C11 1 5 0 6

C12 1 5 0 6

C21 5 6 5 16

C22 5 6 3 14

C111 1 5 0 6

C211 5 6 5 16

30Operating Systems

 Write a concurrent program that

 Given n as its argument

 Generates n children processes

 Each child process outputs its PID and terminates

Exercise

31Operating Systems

Solution 1

int i, n;

scanf ("%d", &n);

for (i=0; i<n; i++) {

fork();

printf ("Proc %d (PID=%d)\n",

i, getpid());

}

exit (0);

32Operating Systems

Erroneous solution 1

Proc 0 (PID=3188)
Proc 1 (PID=3188)
Proc 2 (PID=3188)
Proc 2 (PID=3191)
Proc 1 (PID=3190)
Proc 2 (PID=3190)
Proc 0 (PID=3189)
Proc 1 (PID=3189)
Proc 2 (PID=3189)
Proc 2 (PID=3192)
Proc 2 (PID=3194)
Proc 1 (PID=3193)
Proc 2 (PID=3193)
Proc 2 (PID=3195)

int i, n;

scanf ("%d", &n);

for (i=0; i<n; i++) {

fork();

printf ("Proc %d (PID=%d)\n",

i, getpid());

}

exit (0);

Possible output with
n=3

Control Flow Graph
(CFG)

P

P

P

P C1

C2C3

C2

C21

1

3

2

3

C1

C1

C11C12

C11

C111

3

2

3

33Operating Systems

Erroneous solution 1

C1

C12C11

C111

P

C2

C21

C3
Generates 7 children processes
(in addition to the initial one)

Process tree with
n=3

int i, n;

scanf (“%d”, &n);

for (i=0; i<n; i++) {

fork();

printf (“Proc %d (PID=%d)\n",

i, getpid());

}

exit (0);

Solution 1 is
erroneous

34Operating Systems

Solution 2

int i, n;

…

scanf ("%d", &n);

printf ("Start PID=%d\n",

getpid());

for(i=0; i<n; i++) {

if (fork() == 0) {

printf ("Proc %d (PID=%d)\n",

i, getpid());

break;

}

}

printf ("End PID=%d (PPID=%d)\n",

getpid(), getppid());

exit(0);

35Operating Systems

Solution 2

C1

P

C2 C3

> ps

PID TTY TIME CMD

088 pts/10 00:00:00 bash

> ./u04s01e06-fork

Start PID=3225

End PID=3225 (PPID=2088)

Proc 2 (PID=3228)

End PID=3228 (PPID=1314)

Proc 1 (PID=3227)

End PID=3227 (PPID=1314)

Proc 0 (PID=3226)

End PID=3226 (PPID=1314)

int i, n;

…

scanf ("%d", &n);

printf ("Start PID=%d\n",

getpid());

for(i=0; i<n; i++) {

if (fork() == 0) {

printf ("Proc %d (PID=%d)\n",

i, getpid());

break;

}

}

printf ("End PID=%d (PPID=%d)\n",

getpid(), getppid());

exit(0);

Process tree and
output with n=3

36Operating Systems

 The child process is a new entry in the Process
Table

 The process resources can be

 Completely shared among parent and children
processes

 Same address space

 Partially shared

 Address spaces partially overlapped

 Non shared

 Separate address spaces

Resources

37Operating Systems

Resources

 In UNIX/Linux parent and child share

 The source code (C)

 The open file descriptors (File Description Table)

 In particular, stdin, stdout, and stderr

● Concurrent I/O operation implies producing interlaced
I/O

 User ID (UID), Group ID (GID), etc.

 The root and the working directory

 System resources and their utilization limits

 Signal Table

 Etc.

38Operating Systems

 In UNIX/Linux parent and child have different

 Return fork value

 PID

 The parent keeps its PID

 The child gets a new PID

 Data, heap and stack space

 The initial value of the variables is inherited, but
the spaces are completely separated

 copy-on-write technique is used by modern OSs

● New memory is allocated only when one of the
processes changes the content of a variable

Resources

39Operating Systems

Example

char c, str[10];

c = 'X';

if (fork()) {

// parent (!=0)

c = 'F';

strcpy (str, "parent");

sleep (5);

} else {

// child (==0)

strcpy (str, "child");

}

fprintf(stdout, "PID=%d; PPID=%d; c=%c; str=%s\n",

getpid(), getppid(), c, str);

PID=2777; PPID=2776; c=X; str=child

PID=2776; PPID=2446; c=F; str=parent

Output

40Operating Systems

Process termination

 Five standard methods for process termination

 return from main()

 exit system call

 _exit or _Exit

 Synonyms defined in ISO C or POSIX

 Similar effects of exit, but different management

of stdio flushing etc.

 return from main() of the last process thread

 pthread_exit from the last process thread

41Operating Systems

Process termination

 Three not-normal method for process termination

 Call of the function abort

 Generates the signal SIGABORT, this is a sub-case

of the next because a signal is generated

 If a termination signal, or a signal not caught is
received

 If the last thread of a process is cancelled

42Operating Systems

System call wait () and waitpid ()

 When a process terminates (normally or not)

 The kernel sends a signal (SIGCHLD) to its parent

 For the parent this is an asynchronous event

 The parent process may

 Manage the child termination (and/or the signal)

● Asynchronously

● Synchronously

 Ignore the event (default)

43Operating Systems

System call wait () and waitpid ()

 A parent process can manage child termination

 Asynchronously: using a signal handler for signal
SIGCHLD

 This approach will be introduced in the section
devoted to signals

 Synchronously: by means of system calls

 wait

 waitpid
Child

Parent
wait (waitpid)

join

Parent

44Operating Systems

System call wait ()

#include <sys/wait.h>

pid_t wait (int *statLoc);

 A call of the system call wait by means of a
process

 Returns an error if the calling process has not
children

 A process without children is not supposed to do a
wait

 In this case the returned value is -1

45Operating Systems

System call wait ()

#include <sys/wait.h>

pid_t wait (int *statLoc);

 A call of the system call wait by means of a
process

 Blocks the calling process if all its children are
running (none is already terminated)

 wait will return as soon as one of its children
terminates

46Operating Systems

System call wait ()

#include <sys/wait.h>

pid_t wait (int *statLoc);

 A call of the system call wait by means of a
process

 Returns to the process (immediately) the
termination status of a child, if at least one of the
children has ended (and it is waiting for his
termination status to be recovered)

 When a process ends and the parent does not do a
wait, its termination status remains pending

 Some resources associated with the process remain
blocked

47Operating Systems

System call wait ()

 The statLoc parameter

 Is an integer pointer

 If not NULL collects the exit value of the child

 The status information are

 Implementation dependent

 Recovered using macros defined in <sys/wait.h>
(WIFEXITED, WIFSIGNALED, etc.)

#include <sys/wait.h>

pid_t wait (int *statLoc);

Exit status of the child
process

48Operating Systems

System call wait ()

 WIFEXITED(statLoc) is true if wait terminates
correctly. In this case WEXITSTATUS(statLoc)
catches the 8 LSBs of the parameter passed to a exit
(_exit or _Exit)

 Returned values

 The PID of a terminated child on success

 -1 on error

#include <sys/wait.h>

pid_t wait (int *statLoc);

49Operating Systems

Example

...

pid_t pid, childPid;

int statVal;

...

pid = fork();

if (pid==0) {

// Child

sleep (5);

exit (6);

} else {

...

50Operating Systems

...

// Parent

childPid = wait (&statVal);

printf("Child terminated: PID = %d\n", childPid);

if (WIFEXITED(statVal))

// WIFEXITED: True if correctly terminated

// WEXITSTATUS: Takes the 8 returned LSBs (exit)

printf ("Exit value: %d\n",

WEXITSTATUS (statVal));

else

printf ("Abnormal termination\n");

}

exit(25);

}

...

Example

echo $?
(in a shell) prints 25

Prints 6

51Operating Systems

Zombie processes

 A child process terminated, whose parent is
running, but has not executed wait is in the
zombie state

 The data segment of the process remains in the
process table because the parent could need the
child exit status

 The child entry is removed only when the parent
executes wait

 Many zombie processes may remain in the system if
one or more parents do not execute their wait
system call.

52Operating Systems

Zombie processes

 It the parent process terminates (without
executing wait, and the child is still running, the
latter is inherited by init the process (PID=1).

The child does not become zombie because the
system knows that no one is waiting for its
exit status.

Remember that in recent OS: "jobs started are not reparented to PID1
(init), but to a custom init -user, owned by the same user of the process …"

53Operating Systems

System call waitpid ()

 To use wait for a specific child, you need to

 Control the PID of the terminated child

 Possibly store the PID of the terminated child in
the list of terminated child processes (for future
checks/searches)

 Make another wait until the desired child is
terminated

 If a parent needs to wait a specific child it is
better to use waitpid, which

 suspends execution of the calling process until a
child, specified by pid argument, has changed
state

 waitpid() has a not blocking form (not default)

54Operating Systems

System call waitpid ()

#include <sys/wait.h>

pid_t waitpid (

pid_t pid,

int *statLoc,

int options);

 The parameter pid allows waiting for

 Any child (waitpid==wait) (pid = -1)

 The child whose PID=pid (pid > 0)

 Any child whose GID is equal to that of the calling
process (pid = 0)

 Any child whose GID=abs(pid) (pid < -1)

55Operating Systems

System call waitpid ()

 The options parameter allow additional controls

 Default is 0, or is a bitwise OR of constants

 WNOHANG, if the child specified by PID is running,

the caller does not block (not blocking version of
wait)

 WCONTINUED and WUNTRACED allow to know the

status of a child in particular conditions

#include <sys/wait.h>

pid_t waitpid (

pid_t pid,

int *statLoc,

int options);

56Operating Systems

Exercise

S2

S5

S1

S4

S7

S3

S6

 Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

Si represents a
generic statement

57Operating Systems

Exercise

 Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

S2

S5

S1

S4

S7

S3

S6

fork

fork

wait

wait

58Operating Systems

int main() {

pid_t pid;

printf ("S1\n");

pid = fork();

if (pid == 0) {

//sleep (2);

printf ("S3\n");

exit (0);

} else {

//sleep (2);

printf ("S2\n");

wait ((int *) 0);

}

Solution

S2

S5

S1

S4

S7

S3

S6

Child

Parent

Debug …

Termination state
ignoredReturned PID ignored

59Operating Systems

printf ("S4\n");

pid = fork();

if (pid == 0) {

//sleep (2);

printf ("S6\n");

exit (0);

} else {

//sleep (2);

printf ("S5\n");

wait ((int *) 0);

}

printf ("S7\n");

return (0);

}

Solution

S2

S5

S1

S4

S7

S3

S6

60Operating Systems

Exercise

S2

S4

S1

S5

S7

S3

S6

 Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

61Operating Systems

Exercise

S2

S4

S1

S5

S7

S3

S6

 Implement this Control Flow Graph (CFG) by
means of the system calls fork and wait

fork

wait

wait

62Operating Systems

Solution

int main () {

pid_t pid;

printf ("S1\n");

if ((pid = fork())==-1)

err_sys("can't fork");

if (pid == 0){

P356();

} else {

printf ("S2\n");

printf ("S4\n");

while (wait((int *)0)!= pid);

printf ("S7\n");

exit (0);

}

return (1);

}

S2

S4

S1

S5

S7

S3

S6

Check on different terminations
(useless in this case and
replaceable with waitpid)

63Operating Systems

P356() {

pid_t pid;

printf ("S3\n");

if ((pid = fork()) == -1)

err_sys("can't fork");

if (pid > 0){

printf ("S5\n");

while (wait((int *)0)!=pid);

} else {

printf ("S6\n");

exit (0);

}

exit (0);

}

Solution

S2

S4

S1

S5

S7

S3

S6

64Operating Systems

Exercise

 Write a program that

 Takes as argument an integer value n

 Allocates dynamically an integer vector of
dimension n

 Fills the vector with values reads from the terminal

 Displays the vector content, from the last to the
first element, using n-1 processes, each displaying
a single element of the vector

 Hint

 Synchronize the processes by means of wait
system calls, in order to establish the order of
display of the elements of the vector

65Operating Systems

int main(int argc, char *argv[]) {

int i, n, *vet;

int retValue;

pid_t pid;

n = atoi (argv[1]);

vet = (int *) malloc (n * sizeof (int));

if (vet==NULL) {

fprintf (stderr, "Allocation Error.\n");

exit (1);

}

fprintf (stdout, "Input:\n");

for (i=0; i<n; i++) {

fprintf (stdout, "vet[%d]:", i);

scanf ("%d", &vet[i]);

}

Solution

66Operating Systems

Solution

fprintf (stdout, "Output:\n");

for (i=0; i<n-1; i++) {

pid = fork();

if (pid>0) {

pid = wait (&retValue);

break;

}

fprintf (stdout, "Run PID=%d\n", getpid());

}

fprintf (stdout, "vet[%d]:%d - ", i, vet[i]);

fprintf (stdout, "End PID=%d\n", getpid());

exit (0);

}

67Operating Systems

Exercise

 Implement this Control Flow
Graph (CFG) by means of
the system calls fork and
wait

S20

S11

S23

S24S13

S25

S22

S12

S21

68Operating Systems

main () {

S20 ();

pid = fork ();

if (pid>0) {

P1 ();

wait ((int *)0);

} else {

P2 ();

}

S25 ();

return;

}

P1 P2

Solution

S20

S11

S23

S24S13

S25

S22

S12

S21

69Operating Systems

P1() {

S11 ();

pid = fork ();

if (pid>0) {

S12 ();

wait((int *)0);

} else {

??? To P2 ???;

exit(0);

}

S13 ();

}

Solution

P1 P2
S20

S11

S23

S24S13

S25

S22

S12

S21

70Operating Systems

P2() {

pid = fork ();

if (pid>0) {

S21 ();

??? From S1 ???;

S23 ();

wait((int *)0);

} else {

S22 ();

exit(0);

}

S24 ();

exit (0);

}

Solution

P1 P2
S20

S11

S23

S24S13

S25

S22

S12

S21

71Operating Systems

P1 P2
S20

S11

S23

S24S13

S25

S22

S12

S21

Solution

P2() {

pid = fork ();

if (pid>0) {

S21 ();

??? From S1 ???;

S23 ();

wait((int *)0);

} else {

S22 ();

exit(0);

}

S24 ();

exit (0);

}

P1() {

S11 ();

pid = fork ();

if (pid>0) {

S12 ();

wait((int *)0);

} else {

??? To P2 ???;

exit(0);

}

S13 ();

}

Unfeasible
graph

X

X

