
Processes

Theoretical Aspects
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Program

 Algorithm: a logical procedure that in a finite
number of steps solves a problem

 Program: formal expression of an algorithm by
means of a programming language

 Sequence of code lines

 Static entity

3Operating Systems

Process

 Process: a sequence of operations
performed by a program in execution
on a given set of input data.

 Dynamic entity

 Program in execution (running)

 Text area (executable code)

 Data area (global variables)

 Stack (function parameters and local
variables)

 Heap (dynamic variables allocated
during the process execution)

 Registers (Program counter, stack
pointer, etc.)

4Operating Systems

Process state

 During its execution a process change its state

 New: process is created and submitted to the OS

 Running: a CPU is allocated to the process (in
execution)

 Ready: logically ready to run, waiting that a CPU
is available

 Waiting: for an event or for resources

 Terminated: releases the resource it is using

5Operating Systems

State diagram

 The possible state evolution of a process is
described by a state diagram

Waiting the
a CPU

Waiting an event
(I/O, etc.)

6Operating Systems

Process Control Block (PCB)

 The kernel stores for each
process a set of data, e.g.,

 The process state

 New, Ready, Running, Waiting,
Terminated

 Copy of the CPU registers

 Their number and type is
hardware-dependent

 The program counter

 Address of the next instruction
to be executed

Process Control
Block (PCB)

7Operating Systems

Process Control Block (PCB)

 Data useful for CPU scheduling

 Priority, pointers to queues, etc.

 Data useful for memory
management

 Base register, Limit register,
Segment and paging registers,
etc.

 Signal table

 signal handlers

 Various administration data

 CPU usage, limits, etc.

 I/O status information

 I/O device list, open files, etc.

8Operating Systems

Context switching

 When the CPU is assigned to another process,
the kernel

 Save the state of the running process

 Load the state previously saved for the new
process

 The time devoted to this context switching is
overhead, i.e., time not directly useful for any
process

 The amount of time for context switching is
hardware-dependent

9Operating Systems

Context switching

10Operating Systems

 Multiprogramming aims at maximizing the CPU
usage by processes

 Processes can be classified as

 I/O-bound

 Spend more time for I/0 than for computation

 Require short CPU service times

 CPU-bound

 Spend more time for computation than for I/0

 Require long CPU service times

Process scheduling

11Operating Systems

Process scheduling

 To maximize CPU usage, the kernel manages the
sharing of the CPU among processes by means of
a scheduler

 A scheduler selects the next process to run, among
the ready ones, according to a strategy that tries
to maximize the CPU usage and to satisfy the
response time for users

 Examples

 After a fork proceeds parent or child

 When does a process end, which is the next one?

 When does a process done I/O, which is the next
one?

12Operating Systems

 Different types of schedulers

 Long-term scheduler

 Run less frequently

 Rescheduling time in the order of seconds/minutes

 Selects which process image can be inserted in the
ready list, and loaded in main memory (swapper)

 Controls the degree multiprogramming

 Short-term scheduler

 Selects the next process to run (context-switching)

 Run frequently

 Rescheduling performed every 1 to 10 milliseconds

 Must be extremely fast

Process scheduling

13Operating Systems

Process scheduling

 A scheduler manages waiting processes by
means of process queues

 There are several queues one per device

 Each queue is a

linked list

Ready process queue

I/O waiting process
queue

To maximize the
efficiency, each device

has its own queue

14Operating Systems

Queuing diagram

 The queuing diagram shows the possible process
transitions from one queue to another one

 Each rectangle represents

a queue

Process initially goes
on the ready queue

Process terminates

A running process
releases the CPU and

goes on the ready state
due to (I/O completion,

interrupt, fork, etc.)

Dynamic analysis
of processes

