
Processes

Advanced Control (exec)
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

fork and exec system calls

 System call fork creates a new process
duplicating the calling process.

 There are two main applications of this
mechanism

 Parent and child execute different code sections

 Example: a network server duplicates itself at each
client request, and the child serves the request while
the parent waits for a new client request

 Parent and child execute different code

 Example: a command interpreter (shell)

 Uses the family of exec system calls

● This function is used by many others system call

3Operating Systems

exec system call

 System call exec substitutes the process code
with the executable code of another program

 The new program begins its execution as usual
(from main)

 In particular exec

 Does not create a new process

 Substitutes the calling process image (i.e., its
code, its data, the stack and the heap) with the
image of another program.

 The process PID does not change

 fork  duplicates an existent process

 exec  executes a new program

4Operating Systems

Code

Process

PCB

Data

Code

Parent

PCB

Data

Code

Child

PCB

Data

New Code

New Process

PCB

New Data

Address space

Fork:
creates new processes

Exec:
executes new programs

5Operating Systems

 6 versions of exec system call

 execl, execlp, execle

 execv, execvp, execve

exec system call

Type Action

l (list) Arguments are a list of strings

v (vector) Arguments is a vector of strings arguments (char
**)

p (path) The executable filename is looked for in the
directories listed in the environment variable PATH

e (environment) The last argument is an environment vector envp[]
which defines a set of new associations strings
name=value

6Operating Systems

exec system call

#include <unistd.h>

int execl (char *path, char *arg0, ..., (char *)0);

int execlp (char *name, char *arg0, ..., (char *)0);

int execle(char *path, char *arg0,..., (char *)0,

char *envp[]);

int execv (char *path, char *argv[]);

int execvp (char *name, char *arg[]);

int execve (char *path, char *arg[], char *envp[]);

 Returned values

 None on success

 -1 on error

7Operating Systems

exec system call

 Arguments

 Pathname of the executable file

 Pathname can specify the name of a file, or the
name of a file with the related path

 In the "p" versions of the exec it is sufficient (and
better) to specify only the name of the file

● If the pathname does not contain a path, it is
inherited by the environment variable PATH (echo
$PATH)

● If the pathname contains a path, the "p" version of
exec is equal to the non-"p" version

 In the non-"p" version the pathname should
include the path (otherwise unknown)

8Operating Systems

exec system call

 Its argument list

 In the "l" versions, exec receives a list of parameters
(like a main in C)

● The first argument is the name of the process

o In practice the string argv[0] of the C syntax

● The other arguments of the list are the arguments for
the executable

o In practice argv[i] with i>0 of the C syntax (i.e., argv[1],

argv[2], etc)

 In the "v" versions the argument is a vector of
pointers to the arguments

● In practice it is a dynamic matrix similar to ** argv

● Similar, not identical, because it is "NULL terminated"

o The value argv[i]==NULL indicates the end of the

arguments

9Operating Systems

exec system call

 The optional environment variables

 In the non- "e" versions, environment variables are
inherited from the calling process

 In the versions "e", environment variables are
explicitly specified

● A second matrix dynamically allocated and NULL-
terminated is passed to the function, which is a vector
of pointers to strings of characters

● These strings specify the values of the desired
environment variables (e.g., variable=value)

10Operating Systems

Examples

execl("/bin/cp","mycp","./file1","./file2",NULL);

execl("/bin/cp","mycp","./file1","./file2",(char*)0);

execl("cp","File_copy","./file1","./file2",(char*)0);

execlp("cp","mycp","./file1","./file2",(char*)0);

whereis cp: /bin/cp User defined name
OK

OK

NO

OK

Alternative
termination

Path is missing

Default path ($PATH)

11Operating Systems

Example

...

n = atoi (argv[1]);

switch (n) {

case 1:

printf(“#1:PID=%d;PPID=%d\n", getpid(), getppid());

sleep (n*10);

execlp ("./pgrm", "./Pgrm", "2", (char *) 0);

break;

case 2:

printf("#2:PID=%d;PPID=%d\n", getpid(), getppid());

sleep (n*10);

execlp ("./pgrm", "myPgrm", "3", (char *) 0);

break;

default:

printf("#3:PID=%d;PPID=%d\n", getpid(), getppid());

sleep (n*10);

break;

}

return (1);

The program (./pgrm) recalls itself
if it receives as parameter 1 or 2

The path is the same
arg0 (its name) changes

12Operating Systems

Example

> ./pgrm 1 &

[2] 2471

#1: PID=2471; PPID=2045

> ps -aux | grep 2471

scanzio 2471 0.0 0.0 4192 352 pts/2 S 19:29 0:00 ./pgrm 1

#2: PID=2471; PPID=2045

> ps -aux | grep 2471

scanzio 2471 0.0 0.0 4192 356 pts/2 S 19:29 0:00 ./Pgrm 2

#3: PID=2471; PPID=2045

> ps -aux | grep 2471

scanzio 2471 0.0 0.0 4192 356 pts/2 S 19:29 0:00 ilMioPgrm 3

[2]+ Exit 1 ./pgrm 1

The PID does not change

Run with n=1

Shell commands (in blue)

The name changes

13Operating Systems

exec system call

 execv[p]

 Uses a single argument: a pointer

 The pointer identifies a vector of pointers to the
parameters (i.e., strings)

 The vector must be properly initialized

char *cmd[] = {

"ls",

"-laR",

".",

(char *) 0

};

...

execv ("/bin/ls", cmd);

Last argument must be the
NULL pointer

14Operating Systems

System call exec ()

 exec[lv]e

 Can provide to the executable a set of
environment variables

 Pointer to a vector of pointers (i.e., strings)

 Without “e” the environment of the new process is
inherited from the calling process

char *env[] = {

"USER=unknown",

"PATH=/tmp",

NULL

};

...

execle (path, arg0, ..., argn, 0, env);

...

execve (path, argv, env);

15Operating Systems

Considerations

 Note that during the exec

 all open file descriptors are mantained (including
stdin, stdout, stderr)

 This allow the process to inherit possible
redirections previously set (e.g., by shell)

 Many kernels

 Implement only system call execve

 The other versions are macros that use this system
call

16Operating Systems

Exercise

 Draw the process generation tree of the following
C code segment

 executed passing as its argument on the command
line string "5"

 What does it display?

 Why?

17Operating Systems

#include <stdio.h>

...

#include <unistd.h>

int main (int argc, char ** argv) {

char str[10];

int n;

n = atoi(argv[1]) - 1;

printf ("%d\n", n);

if (n>0) {

sprintf (str, "%d", n);

execl (argv[0], argv[0], str, NULL);

}

printf ("End!\n");

return 1;

}

Exercise

Run with n=5

18Operating Systems

4

3

2

1

0

End!

Solution

n=4; printf 4

exec

n=3; printf 3

exec

n=2; printf 2

exec

n=1; printf 1

exec

n=0; printf 0

printf End!

P(5)

P(4)

P(3)

P(2)

P(1)

Output

int main (int argc, char ** argv) {

char str[10];

int n;

n = atoi(argv[1]) - 1;

printf ("%d\n", n);

if (n>0) {

sprintf (str, "%d", n);

execl (argv[0], argv[0], str, NULL);

}

printf ("End!\n");

return 1;

}

19Operating Systems

Exercise

 Draw the process generation tree of the following
C code segment

 What does it display?

 Why?

20Operating Systems

#include <stdio.h>

#include <unistd.h>

int main(){

int n;

n=0;

while (n<3 && fork()){

if (!fork())

execlp ("echo", "n++", "n", NULL);

n++;

printf ("%d\n", n);

}

return (1);

}

Exercise

shell command
to print on stdout

fork #1
If 0 we are in the child; the

child ends immediately

fork #2
If 0 we are in the child; the

child does exec

21Operating Systems

1

2

3

n

n

n

Solution

Output

P

P
C1

exec; echo nn=1; printf 1

P C2

exec; echo nn=2; printf 2

P C3

n=0

n=1

exec; echo nn=3; printf 3

n=2

n=3

fork #1 in the while
condition is true only for the

parent, thus it continues,
whereas the child exits

stop

Which
order?

fork #2

22Operating Systems

UNIX shell skeleton

 Command run in foreground

 <command>

while (TRUE) {

write_prompt;

read_command (command, parameters);

if (fork() == 0)

/* Child: Execute command */

execve (command, parameters);

else

/* Parent: Wait child */

wait (&status);

}

23Operating Systems

UNIX shell skeleton

 Command run in background

 <command> &

while (TRUE) {

write_prompt;

read_command (command, parameters);

if (fork() == 0)

/* Child: Execute command */

execve (command, parameters);

/* else */

/* Parent: DOES NOT wait */

/* wait (&status); */

}

24Operating Systems

Command execution

 It can be useful to execute a shell command
from a process

 For example for appending a date or a hour to a
filename or to a file

 System call system solves this problem

 Defined in the standard ISO C and POSIX

 Although defined by the C standard, it is highly
implementation-dependent

 It is always present in UNIX-like systems

25Operating Systems

system() system call

#include <stdlib.h>

int system (const char *string);
Since it is implemented
with fork, exec and wait
has different termination

conditions System call system()

 Forks a shell, which execute the string command,
while the parent process waits the termination of
the shell command

 Returned values

 -1 if fork or waitpid fail (used in its implementation)

 127 if the exec fails (used in its implementation)

 The exit value of the shell that executed the
command (with the format of waitpid)

26Operating Systems

Example

...

system ("date");

...

system ("date > file");

char str[L];

...

strcpy (str, "ls -la");

system (str);

...

...

system ("ls -laR");

...

Redirection...
see section u04s07

27Operating Systems

system() implementation

 In initial LINUX versions

 system was implemented by means of

 fork, exec and wait

 They were inefficient due to polling

 while ((lastpid=wait(&status)) != pid &&
lastpid!=-1);

 Current versions

 usually use the system calls fork, exec and waitpid

28Operating Systems

system() implementation

int system (const char *cmd) {

pid_t pid;

int status;

if (cmd == NULL)

return(1);

if ((pid = fork()) < 0) {

status = -1;

} else if (pid == 0) {

execl("/bin/sh", "sh", "-c", cmd, (char *) 0);

_exit(127);

} else {

while (waitpid (pid, &status, 0) < 0)

if (errno != EINTR) {

status = -1;

break;

}

}

return(status);

}

Error in fork

The shell must read
from the command
line, not from stdin

Options:
WNOHANGInterrupted

function call

29Operating Systems

Exercise

 Draw the process generation tree of the following
C program

 executed passing as its argument on the command
line string "4"

 What does it display?

 Why?

30Operating Systems

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char ** argv){

int n;

char str[10];

n = atoi (argv[1]);

if (n>0) {

printf ("%d\n", n);

sprintf (str, "%s %d", argv[0], n-1);

system (str);

}

printf("End!\n");

return (1);

}

Exercise

Run with n=4

31Operating Systems

4

3

2

1

End!

End!

End!

End!

End!

Solution

Output

printf 4

system

printf 3

system

printf 2

system

printf 1

system

printf End!

printf End!

printf End!

printf End!

printf End!

P(4)

P(3)

P(2)

P(1)

P(0)

32Operating Systems

Exercise

 Draw the process generation tree of the following
C code segment

 What does it display?

 Why?

33Operating Systems

#include ...

int main () {

char str[100];

int i;

for (i=0; i<2; i++){

if (fork()!=0) {

sprintf (str, "echo system with i=%d", i);

system (str);

} else {

if (fork()==0) {

sprintf (str, "exec with i=%d", i);

execlp ("echo", "myPgrm", str, NULL);

}

}

}

return (0);

}

Exercise

34Operating Systems

Exercise

P

P

P C1

C2

C2

C21

C11

C1

1

2

2

1

C121

C12

2

i=0

i=2

i=1 1

C12

echo system with i=%d

exec echo with i=%d

Output

Which
order?

system with i=0

system with i=1

exec with i=1

exec with i=0

system with i=1

exec with i=1

