Processes

Signals
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

Operating Systems 1= 2

*» Interrupt

» Interruption of the current execution due to the
occurrence of an extraordinary event

% It can be caused by

> A hardware device that sends a service request to
the CPU

> A software process that requires the execution of a
particular operation

% For further information on interrupts:
> https://www.skenz.it/listing/os/u04-processes/u04s10-interrupts.pdf

https://www.skenz.it/listing/os/u04-processes/u04s10-interrupts.pdf

Operating Systems i 15 3

Definition

% A signal is
> a software interrupt

> i.e., an asynchronous notification sent, by the kernel
or by another process, to a process to notify it of an
event that occurred

% Signals
» Allow notify asynchronous events

= such as the occurrence of particular events (e.g., error
conditions, memory access violations, calculation
errors, illegal instructions, etc.)

» Can be used as a limited form of inter-process
communication

Operating Systems —~¥. .. 4

Definition

%+ Examples of common signals

» Termination of a child
= SIGCHLD sent to the parent;
default action = ignore the signal
» Press on the terminal Ctrl-C
= SIGINT sent to the running process (in foreground);
default action = terminate the process
» Invalid memory access
= SIGTSTP sent by the kernel to the process;
default action = suspend the execution

Operating Systems o 5

Definition

» The system call sleep(t)
= SIGALARM sent after t seconds;
default action = restart the process
» Press on the terminal Ctrl-Z
= SIGTSTP sent to the running process (in foreground)
default action = suspend the execution
> Press on the terminal Ctrl-\
= SIGQUIT sent to the running process (in foreground)
default action = terminate the process and dump core

Operating Systems

|

Exception
Divide error
Debug
Breakpoint
Overflow
Bounds check

Invalid opcode
Segment not present

Stack segment fault
General protection
Page Fault
Intel-reserved

Floating-point error

Exception handler
divide_error()
debug()

int3()

overflow()
bounds()
invalid_op()

segment_not_present()

stack_segment()
general_protection()
page_fault()

None

coprocessor_error()

Signal
SIGFPE
SIGTRAP
SIGTRAP
SIGSEGV
SIGSEGV
SIGILL

SIGBUS

SIGBUS
SIGSEGV
SIGSEGV
None
SIGFPE

Operating Systems Sl (ke 7

Characteristics

%+ Available from the very first versions of UNIX

» Originally managed in an unreliable way

= They could be lost

e Unix Version 7: a signal could be sent and never
received

= At the reception of each signal the behavior
returned the default one

e The signal handler had to be reloaded
= A process could not ignore the reception of a signal

Operating Systems 1= 8

Characteristics

% Standardized by the POSIX standard, they are
now stable and relatively reliable

%+ Each signal has a name
» Names start with SIG...

» The file signal.h defines signal names
= Unix FreeBSD, Mac OS X and Linux support 31
signals
= Solaris supports 38 signals

Operating Systems

|

SIGABRT Process abort, generated by system call abort
SIGALRM Alarm clock, generated by system call alarm
SIGFPE Floating-Point exception

SIGILL Illegal instruction

SIGKILL Kill (non maskable)

SIGPIPE Write on a pipe with no reader

SIGSEGV Invalid memory segment access

SIGCHLD Child process stopped or exited

SIGUSR1 User-defined signal /2
SIGUSR2 default action = terminate the process
Available for use in user applications

You can display the complete list of signals using the shell
command kill -1

Operating Systems ;b 10

Signal management

%+ Signal management goes through three phases:
signal generation, signal delivery, reaction to a signal

» Signal generation

= When the kernel or a source process causes an
event that generate a signal

> Signal delivery
= A not yet delivered signal remains pending

= At signal delivery a process executes the actions
related to that signal

= The lifetime of a signal is from its generation to its

delivery There is no signal
queue; the kernel sets a
flag in the process table

Operating Systems - § 11

Signal management

» Reaction to a signal

= To properly react to the asynchronous arrival of a
given type of signal, a process must inform the kernel
about the action that it will perform when it will
receive a signal of that type

= A process may

e Accept the default behavior (be terminated)

e Declare to the kernel that it wants to ignore the signals
of that type

e Declare to the kernel that it wants to catch and manage
the signals of that type by means of a signal handler
function (similarly to the interrupt management)

Operating Systems 1= 12

Signal management

Signal managed by J

Process Running

Signal Generated means of a

signal handler

/‘1
/
Initial /
standard 4
execution A ,/
flow Va4
v Signal Caught by handler
: : A
Signal delivered 7 __g—
Resumes Signal not blocked of the
standard Signal Handler signal
execution handler

flow

N\
N\

Return from Signal Handler

Process Resumed

Operating Systems Ny 13

Signal management

%+ Signal management can be carried out with the
following system calls
> signal
= Instantiates a signal handler

> kill (and raise) The terms signal and kill are
. relatively inappropriate.
" Sends a Slgnal signal does not send a signal!!

> pause
= Suspends a process, waiting the arrive of a signal
> alarm
= Sends a SIGALARM signal, after a preset time
> sleep
= Suspends the process for a specified amount of time
(waits for signal SIGALRM)

Operating Systems

signal() system call

Received

~ Returned

parameter
#include <signal.h> of the signal D
handlar of the signal
a handler

void (*signal (int sig,
void (*func) (int))) (int);

-

% Allow to instantiate a signal handler
» Specifies the signal to be managed (sig)

» The function use to manage it (func), i.e., the
signal handler

Operating Systems i1 3]

signal() system call

/)

#include <signal.h>

void (*signal (int sig,
void (*func) (int))) (int);

= J

< Arguments
> sig indicates the type of signal to be caught
= SIGALRM, SIGUSRI1, etc.

> func specifices the address (i.e., pointer) to the
function that will be executed when a signal of
that type is received by the process
= This function has a single argument of int type,

which indicates the type of signal that will be
handled

Operating Systems

|

y

#include <signal.h>

void (*signal (int sig,
void (*func) (int))) (int);

A\

*»» Returned values

» on success, the previous value of the signal
handler, i.e., the pointer to the previous signal
handler function

= Returns a void *

» SIG_ERR on error, errno is set to indicate the

cause
= #define SIG_ERR ((void (*)()) -1

Operating Systems 1= I

Reaction to a signal

% signal system call allows setting three different
reactions to the delivery of a signal
» Accept the default behavior
= signal (SIGname, SIG_DFL)

= Where SIG_DFL is defined in signal.h
¢ #idefine SIG DFL ((void (*)()) O

= Every signal has its own default behavior, defined by
the system

= Most of the default reactions is process termination

Operating Systems - § 18

Reaction to a signal

> Ignore signal delivery
= signal (SIGname, SIG_IGN)
= Where SIG_IGN is defined in signal.h
o #define SIG DFL ((void (*)()) 1

= Applicable to the majority of signals
e Ignoring a signal often leads to an indefinite behavior

= Some signals cannot be ignored

e SIGKILL and SIGSTOP cannot be ignored because
the kernel and the superuser would not have the
possibility to control all processes

e Ignoring an illegal memory access, signaled by
SIGSEGV, would produce an undefined process
behavior

Operating Systems Sl 1255 19

Reaction to a signal

» Catch the signal
= signal (SIGname, signalHandlerFunction)

= where
e SIGname indicates the signal type
/" Asignal ¢ signalHandlerFunction is the user defined signal
fha”?:_'er handler function
n‘i[,‘.ﬁt'?,z = The signal handler
defined for e Can take action considered correct for the
_every management of the signal
signal type . .
that must e Is executed asynchronously when the signal is
_ be caught / received

e When it returns, the process continues with the next
instruction, as it happens for interrupts

Operating Systems 20

|

2 Y

#include <signal.h> Signal handler for
#include <stdio.h> signal SIGINT
#include <unistd.h>

void manager (int sig) {
printf ("Received signal %d\n", sigqg);
// signal (SIGINT, manager)
return;

Obsolete versions:

} _ re-instantiate the signal
int main() {

signal (SIGINT, manager) ; ‘

while (1) { N Declares the signal
printf ("main: Hello!'\n"); handler
sleep (1)

}

}

A

Operating Systems

21

|

p

}

}

A

Same signal handler

void manager (int sig) { for more than one

if (sig==SIGUSR1) signal type
printf ("Received SIGUSR1\n");

else if (sig==SIGUSRZ2)
printf ("Received SIGUSR2\n");

else printf ("Received %d\n", sig);

return;

Both signal types

int main () { must be declared

signal (SIGUSR1l, manager) ;
signal (SIGUSR2, manager) ;

Operating Systems 22

Example 3-A

/[Synchronous management } \

of SIGCHLD (with wait)

) When a child dies, a SIGCHLD
if (fork() == 0) { signal is sent to the parent }
// child

i=2;
sleep (1) ;
printf (“i=%d PID=%d\n", i, getpid()):;
exit (1),

} else {
// father
sleep (5);
pid = wait (&code) ;
printf ("Wait: ret=%d code=%x\n", pid, code);

Wait: ret = 3057 code = 200 }

Operating Systems 23

Example 3-B

=
2
Ignore SIGCHLD, sent
by the kernel to the
parent at the exit of a

Altering the behavior of)
wait J

signal (SIGCHLD, SIG_IGN); \me

if (fork == 0

* //‘ ol) "ﬁ PID=3057 }
i=2;
sleep (1) ;

printf (“i=%d PID=%d\n", i, getpid()):;
exit (1),

} else {
// father No wait:
sleep (5); Wait: ret = -1 code = 7FFFZ

pid = wait (&code);
printf ("Wait: ret=%d code=%x\n", pid, code);

The execution of a signal(SIGCHLD, SIG_IGN) prevents children
from becoming zombies while a signal(SIGCHLD, SIG_DFL) is not
sufficient for this purpose (even if SIGCHLD is ignored)

Operating Systems 24

/{ Asynchronous management } \

of SIGCHLD
static void sigChld (int signo) {
if (signo == SIGCHLD)
printf ("Received SIGCHLD\n") ;
return;

}
signal (SIGCHLD, sigChld) ;

if (fork() == 0) {
// child

exit (i)

} else {
// father

}

AU)

Operating Systems 23

kill() system call

' N

#include <signal.h>

int kill (pid t pid, int sig);

S J

% Send signal (sig) to a process or to a group of
processes (pid)

% To send a signal to a process, you must have the
rights

> A user process can send signals only to processes
having the same UID

» The superuser can send signal to any process

Operating Systems 26

|

4 N\

#include <signal.h>

int kill (pid t pid, int sig);

AN J

< Arguments
pid sig

>0 To process with PID equal to pid

==0 To all processes with GID equal to its GID (if it has the
rights)

<0 To all processes with GID equal to the absolute value of
pid (if it has the rights)

==-1 To all processes (if it has the rights) (“A|l process” excludes

a set of system
processes

Operating Systems Ny 27

kill system call

f)

#include <signal.h>

int kill (pid t pid, int sig);

. J

+»» Returned values
» 0 on success
» —1 on error

~

If sig=0 a NULL signal is sent (i.e., no
signal is sent).

This is often used to check if a
process exists: if the kill returns -1 the
process does not exist.)

Operating Systems 114 28

raise() system call

f)

#include <signal.h>

int raise (int sigqg);

(S J

% The raise system call allows a process to send a
signal to itself

> raise (sig) IS equivalent to
> kill (getpid(), sig)

Operating Systems 29

pause() system call

' N

#include <unistd.h>

int pause (void)

S J

%+ Suspends the calling process until a signal is
received

% Returns after the completion of the signal
handler

> In this case the function returns -1

Operating Systems 30

alarm() system call

')

#include <unistd.h>

unsigned int alarm (unsigned int seconds) ;

- J

% Activate a timer (i.e., a count-down)

» The seconds parameter specifies the count-down
value (in seconds)

> At the end of the countdown the signal SIGALRM
iS generated

= If SIGALRM is not caught or ignored, the default
action is the process termination

Operating Systems 31

alarm() system call

')

#include <unistd.h>

unsigned int alarm (unsigned int seconds) ;

- J

% If the system call is executed before the previous
call has originated the corresponding signal, the
count-down restarts from a new value.

» In particular, if seconds is equal to 0 (seconds),
the previous alarm is deactivated

Operating Systems L 188 32

LY

alarm() system call

.)

#include <unistd.h>

unsigned int alarm (unsigned int seconds) ;

= J

+»» Returned values

» the number of seconds remaining until the delivery
of a previously scheduled alarm

> zero if there was no a previously scheduled alarm

Operating Systems T 33

alarm system call

")

#include <unistd.h>

unsigned int alarm (unsigned int seconds) ;

(S J

< Warning
» The signal is generated by the kernel

= Tt is possible that the process get the CPU control
after some time, depending on the scheduler
decisions

» There is only one time counter for each process,
and system calls sleep and alarm uses the same
kernel timer

Operating Systems 34

|

< Implement system call sleep using system calls

alarm and pause The signal handler

must be instanced

/#include <signal.h>

#include <unistd.h> before setting the
alarm
static void sig _alrm(int signo) {return;}
unsigned int sleepl (unsigned int nsecs)
{
if (signal (SIGALRM, sig alrm) == SIG_ERR)
return (nsecs); _
alarm (nsecs); After setting the
pause () ; alarm the system
return (alarm(0)) ; waits a signal
} L
A Returns 0, or the remaining time /

before the delivery if pause returns

because another signal has been
received

Operating Systems 35

% Implement system call alarm using system calls
fork, signal, kill and pause

2 N
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

void myAlarm (int sig) {
if (sig==SIGALRM)
printf ("Alarm on ...\n");
return;
}
o /)

Operating Systems

36

|

//;nt main (void) {

pid t pid;

(void) signal (SIGALRM, myAlarm) ;
pid = fork();

switch (pid) {

case -1: /* error */ . :
printf ("fork failed"); The child waits
exit (1); and sends
case 0: /* child */ SIGALRM
sleep(5) ;
kill (getppid(), SIGALRM) ;
exit(0) ;
}
/* parent */ The parent pauses, and continues
pause () only when it receives the SIGALRM
exit (0); sent by the child

Operating Systems 37

Signal limitations

% Signals do not convey any information

%+ The memory of the "pending" signals is limited

» Max one signal pending (sent but not delivered)

per type
= Forthcoming signals of the same type are lost

» Signals can be ignored
% Signals require functions that must be reentrant
% Produce race conditions
%+ Some limitations are avoided in POSIX.4

Operating Systems

38

|

p

static void
sigUsrl (int signo) ({
if (signo == SIGUSR1)

else

return;

static void sigUsrl (iz.c);
static void sigUsr2 (int);

Program with 2 signal handlers:

sigUsrl and ...

printf ("Received SIGUSR1\n") ;

printf ("Received wrong SIGNAL\n") ;

fprintf (stdout, "sigUsrl sleeping ...\n");
sleep (5);
fprintf (stdout, "... sigUsrl end sleeping.\n");

/

Operating Systems 39

|

/ Program with 2 signal handlers:
sigUsrl and sigUsr2

static void
sigUsr2 (int signo) ({
if (signo == SIGUSRZ2)
printf ("Received SIGUSR2\n") ;
else
printf ("Received wrong SIGNAL\n") ;

fprintf (stdout, "sigUsr2 sleeping ...\n");
sleep (5);

fprintf (stdout, "... sigUsr2 end sleeping.\n");
return;

Operating Systems

40

|

e

int

main (void) {

if (signal (SIGUSRI1,
fprintf (stderr,
return (1) ;

}

if (signal (SIGUSR2,
fprintf (stderr,
return (1) ;

}

while (1) {
fprintf (stdout,
pause ();
fprintf (stdout,

}

return (0);

sigUsrl) == SIG ERR) {
"Signal Handler Error.\n");

sigUsr2) == SIG ERR) {
"Signal Handler Error.\n");

"Before pause.\n");

"After pause.\n");

The main iterates waiting
signals from shell

Operating Systems 41

Limited memory

(

Shell commands } ™

> ./pgrm & Correctly received

[3] 2636 SIGUSR1
> Before pause.

> kill -USR1 2636
> Received SIGUSR1
sigUsrl sleeping
sigUsrl end sleeping. _
After pause. Correctly received
Before pause. SIGUSR2
> kill -USR2 2636
> Received SIGUSR2
sigUsr2 sleeping ...
sigUsr2 end sleeping.
After pause.
Before pause.

Observation:
\ shell command kill sends a signal to
a process with a specified PID

Operating Systems 42

Limited memory

-

/ Two signals sent in
sequence:

SIGUSR1 and SIGUSR2

> kill -USR1 2636 ; kill -USR2 2636
> Received SIGUSR2
sigUsr2 sleeping ...
sigUsr2 end sleeping.
Received SIGUSRI1
sigUsrl sleeping ... _
sigUsrl end sleeping. Both are received 1
After pause.
Before pause.

The deliver order of the two
N signal cannot be predicted (it
L this case SIGUSR2 arrives first)

Operating Systems 43

Limited memory

p

> kill -USR1 2636 ; kill -USR2 2636 ; kill -USR1l 2636
> Received SIGUSR1
sigUsrl sleeping ...

sigUsrl end sleeping. Three signals sent in
Received SIGUSR2 sequence: two SIGUSR1 and
sigUsr2 sleeping ... one SIGUSR2

sigUsr2 end sleeping.
After pause.
Before pause.

> kill -9 2636

A SIGUSR1 is lost }
[3]+ Killed ./pgrm

AU

-9 = SIGKILL = Kilq
J

L Kill @ process

Operating Systems 17~ 44

K

Reentrant functions

% A signal has the following behavior:
» The interruption of the current execution flow
» The execution of the signal handler
» The return to the standard execution flow at the

end of the signal handler l_.
< Consequently Iﬁ
» The kernel knows where a signal handler returns,
but

» The signal handler does not know where it was
called, i.e., the control flow was interrupted by the
signal

Operating Systems 45

Reentrant functions: Examples

“» What happens if the signal handler performs an
operation that is not compatible with the
original execution flow?

» Suppose a malloc is interrupted, and the signal
handler calls another malloc

= Function malloc manages the list of the free memory
regions, which could be corrupted

» Suppose that the execution of a function that uses
a static variable is interrupted, but is then called
by the signal handler

= The static variable could be used to store a new

value, i.e., it does not remain the same it was
before the signal was delivered

Operating Systems 46

Reentrant functions: Conclusions

% The "Single UNIX Specification" defines the
reentrant functions, which can be interrupted
without problems

» read, write, sleep, wait, etc.
% Most of the I/O standard C functions are not

reentrant A call to printf can be interrupted
> printf, scanf, etc. and give unexpected results

» They use static variables or global variables

» They must be used carefully and being aware of
possible problems

Operating Systems 17 47

V¥

++» Race condition

» The result of more concurrent processes working
on common data depends on the execution order
of the processes instructions

%+ Concurrent programming is subject to race
conditions

% Using signals increases the probability of race
conditions.

48

Operating Systems
Race conditions example A

%+ Suppose a process decides to suspend itself for a
given number of seconds

See implementation of
alarm using fork,
signal, kill and pause

See implementation of sleep
using alarm and pause

static void
myHandler (int signo) {

\ ..

signal (SIGALARM, myHandler)
alarm (nSec) ;

pause ();

& J

Operating Systems 49

|

%+ Suppose a process decides to suspend itself for a
given number of seconds

< The signal could be delivered before the
execution of pause due to a contest switching
and scheduling decisions (especially in high
loaded systems)

P
static void Signal SIGALRM can be

myHandler (int signo) ({ delivered before pause

}

signal (SIGALARM, myHandler)
alarm (nSec) ;
pause ()

pause blocks the process
forever because the signal has
been lost

Operating Systems 50

Race conditions example B

< Suppose two processes P, and P, decide to
synchronize by means of signals
< Unfortunately

» If P, (P,) signal is delivered before P, (P,) executes
pause

» Process P, (P;) blocks forever waiting a signal

c N c D
P, P,
while (1) { while (1) {
c.. pause ()
kill (pidP2, SIG...);—/')
pause (), <& kill (pidP1l, SIG...);
} }

S J (& J

Operating Systems

%+ Despite their defects,
signals can provide a rough
synchronization mechanism

% Ignoring the race
conditions (and using
fork, wait, signal, @
kill, and pause)
implement this precedence
graph

siy

513

OQ-OE

51

Operating Systems 52

|

2 Y

Definition of the signal handler

static wvoid
sigUsr (int signo) {
if (signo==SIGUSR1)
printf ("SIGUSR1l\n");
else if (signo==SIGUSR2)
printf ("SIGUSR2\n");

else
printf ("Signal %d\n", signo);
return;

}

A /

Operating Systems 93

|

/ Instancing of the signal

handler for signals SIGUSR1

int main (void) { e SUELERZ

pid t pid;

if (signal (SIGUSR1l, sigUsr) == SIG_ERR) {
printf ("Signal Handler Error.\n");
return (1) ;

}

if (signal (SIGUSR2, sigUsr) == SIG_ERR) {
printf ("Signal Handler Error.\n");
return (1) ;

}

Operating Systems

54

P2 is the child. It can
obtain the pid of the
parent with getppid()

P1 is the parent, it

of the child J

must store the pid

printf ("S20\n");
pid = fork ()
if (pid > (pid t) 0) {
Pl (pid);
wait ((int *) O0);
} else {
P2 ();
exit (0);
}
printf ("S25\n") ;
return (0) ;

Operating Systems 99

c N
void P1 (
pid t cpid
) |

printf ("S11\n");
sleep (1); // '?
kill (cpid, SIGUSR1) ;
printf ("S12\n");
pause () ;

printf ("S13\n");

return;
}
P1 is the parent, it
must store the pid \ /
of the child

Operating Systems

56
P2 is the child. It can
obtain the pid of the
parent with getppid()

C I
void P2 (){
if (fork () > 0) {
printf ("S21\n");
pause () ;
printf ("S23\n");
kill (getppid (),
SIGUSR2) ;
wait ((int *) O0);
} else {
printf ("S22\n") ;
exit (0);
}
printf ("S24\n") ;
return;

}
- /

