
Processes

Shell commands for process management
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Foreground execution

 The "standard" shell commands

 Allow executing processes sequentially

 Each process is executed in foreground, i.e.,
using the control terminal

command 1

command 2

> command1

Output of command1

> command2

Output of command2

command1; command2; ...
Sequential execution

3Operating Systems

Background execution

 The shell interpret character & as an indication to
run the command in background

 The process is executed in concurrency with the
shell. It loses the control terminal input

 The shell outputs immediately a new prompt

 It is possible to run several processes in parallel

command1

command2

> command1 &

> command2 &

>

Output of command1

Output of command2

4Operating Systems

Commands for processes

 There are two main commands to view the status
of processes

 The command ps (process status of active process)

 Lists active processes and related details

 Without options (default) prints (in a compact format)
the status of the processes with the same user ID of
the user from which the command is executed

The shell is the parent of all
the shell commands and the

related processes

5Operating Systems

Process status commands

 ps <options>

 -a Lists the processes of all system users

 -u Prints more detailed information

(resident size, virtual size, etc.)

 -u <user> Shows only the <user> processes

 -x Adds to the list the processes that do
not have a control terminal

(e.g., daemon)

 -e (or –A) Lists all processes running in the system

 -f Extended format

 r (not –r) Shows only the "running" processes

6Operating Systems

Process status commands

 Command top

 Display and updates information about the system
used resources, and the active processes

user@mahine:~/$ top

top - 10:26:58 up 57 min, 3 users, load average: 0.00, 0.01, 0.05

Tasks: 152 total, 2 running, 150 sleeping, 0 stopped, 0 zombie

%Cpu(s): 4.0 us, 0.6 sy, 0.4 ni, 93.5 id, 1.4 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 8177092 total, 1382976 used, 6794116 free, 174096 buffers

KiB Swap: 10482684 total, 0 used, 10482684 free. 544664 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1821 user 20 0 1297200 198644 39328 S 65.6 2.4 1:59.62 compiz

1302 root 20 0 326708 101316 17712 S 13.1 1.2 0:23.63 Xorg

1 root 20 0 33648 3028 1492 S 0.0 0.0 0:00.78 init

2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd

3 root 20 0 0 0 0 S 0.0 0.0 0:00.01 ksoftirqd/0

4 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0

...

7Operating Systems

kill command

 kill allows sending signal from the shell

 Format

 kill [-sig] pid

 Sends signal sig to process with PID=pid

 Option sig indicates the signal code

 pid is the process identifier (PID) of the target
process

8Operating Systems

kill command

 A signal sig can be indicated by means of its
name or by its corresponding number

 The list of the available signals can be obtained
using the "-l" option

 SIGKILL = KILL = 9

 SIGUSR1 = USR1 = 10

 SIGUSR2 = USR2 = 12

 SIGALRM = ALRM = 14

 etc.

 The default signal of kill is SIGTERM (or TERM),
the standard termination command

9Operating Systems

kill command

 Examples
 kill –l

 kill -9 10234

 kill –SIGKILL 10234

 kill –KILL 10234

 Shell command killall terminates all process

with a specified name

 killall -9 name

 Useful to terminate all processes generated by the
same program avoiding to specify their PIDs

List available signals

Three commands to terminate
process with PID 10234

