
Processes

Inter-process communication (and pipe)
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Independent and cooperating processes

 Concurrent processes can be

 Independent

 Cooperating

 An independent process

 Cannot be influenced by other processes

 Cannot influence other processes

 A set of cooperating processes

 can cooperate only by sharing data or by
exchanging messages

 Both require appropriate synchronization
mechanisms

3Operating Systems

Inter-Process Communication

 Information sharing among processes is referred

to as IPC or InterProcess Communication

 The main communication models are based on

 Shared memory

 Message exchange

4Operating Systems

Communication models

Process A

Process B

Shared
Memory Area

Kernel

 Shared memory

 Sharing of a memory area and
writing of data in this area

 Normally the kernel does not
allow a process to access the
memory of another process

 Processes must agree on the:

● Access rights

● Access strategies

o e.g., Producer-consumer with

bounded or unbounded buffer

5Operating Systems

Communication models

Process A

Process B

Shared
Memory Area

Kernel

 The most common methods for
shared buffer use a

 File

● Sharing the name or the file
pointer or descriptor before
fork/exec

 Mapped file in memory

● A file mapped in memory
associates a shared memory
region to a file

 These techniques allow sharing a
large amount of data

6Operating Systems

Communication models

 Message exchange

 Communication takes place
through the exchange of
messages

 Need to setup of a
communication channel

 Useful for exchanging limited
amounts of data

 Uses system calls

 which request kernel intervention

 and introduce overhead

Process A

Process B

Kernel

7Operating Systems

Communication channels

 A communication channel can offer direct or
indirect communication

 Direct

 Is performed naming the sender or the receiver
● send (to_process, message)

● receive (from_process, &message)

 Indirect

 Performed through a mailbox
● send (mailboxAddress, message)

● receive (mailBoxAddress, &message)

Process A

Process B

Kernel

8Operating Systems

Communication channels

 A communication channel can be characterized by

 Synchronization

 Both sending or receiving messages can be

● Synchronous, i.e., blocking

● Asynchronous, i.e., non-blocking

 Capacity

 If the capacity is zero, the channel cannot allow
waiting messages (no buffering); the sender blocks
waiting for the receiver

 If the capacity is limited the sender blocks when the
queue is full

 If the capacity is unlimited the sender does not
block

Process A

Process B

Kernel

9Operating Systems

 UNIX makes available

 Half-duplex pipes

 FIFOs

 Full-duplex pipes

 Named full-duplex pipes

 Message queues

 Semaphores

 Sockets

 STREAMS

Communication channels

Network process communication.
Each process is identified by a

socket to which it is associated a
network address

Extensions of the pipes not
covered in this course

For process synchronization

Not all the types of
communication are supported

by all the UNIX versions
Used starting from UNIX System V

10Operating Systems

Pipes

 Pipes are the oldest form of communication in
UNIX SO

 Allow creating a data stream among processes

 The user interface to a pipe is similar to file access

 A pipe is accessed by means of two descriptors
(integers), one for each end of the pipe

 A process (P1) writes to an end of the pipe,
another process (P2) reads from the other end

P1 P2

11Operating Systems

Pipes

 Historically, they have been

 half-duplex

 Data can flow in both directions (from P1 to P2 or
from P2 to P1), but not at the same time

 Full-duplex models have been proposed more
recently, but they have limited portability

 A pipe can be used for communication among a
parent and its childs, or among processes with a
common ancestor

 The file descriptor must be common to the two
communicating processes and therefore these
processes must have a common ancestor

Simplex, for synchronization
problems

Terminology:
Simplex: Mono-directional
Half-Duplex: One-way, or bidirectional, but alternate (walkie-talkie)
Full-Duplex: Bidirectional (telephone)

12Operating Systems

pipe() system call

 System call pipe creates a pipe

 It returns two file descriptors in vector fileDescr

 fileDescr[0]: Typically used for reading
fileDesrc[1]: Typically used for writing

 The input stream written on fileDescr[1]
corresponds to the output stream read on
fileDescr[0]

#include <unistd.h>

int pipe (int fileDescr[2]);

13Operating Systems

pipe() system call

 Returned values

 0 on success

 -1 on error

#include <unistd.h>

int pipe (int fileDescr[2]);

14Operating Systems

 Using a pipe inside a process is possible but not
much useful

fd[0] fd[1]

Process

pipe

fd[0] fd[1]

Process

pipe

Kernel

The data flows through a
synchronized kernel buffer

pipe() system call

15Operating Systems

Parent process

 A pipe typically allows a parent and a child to
communicate

 Parent must fork (e.g., by means of the fork()

system call) after creating the pipe

pipe() system call

16Operating Systems

fd[0] fd[1]

Parent process

pipe

Kernel

 The "parent" process creates a pipe

pipe() system call

17Operating Systems

fd[0] fd[1]

Parent process

pipe

fd[0] fd[1]

Child process

Kernel

pipe() system call

 The "parent" process creates a pipe

 Performs a fork

 The child process inherits the file descriptors

If the pipe were made after the fork(),
the descriptors would not be inherited

18Operating Systems

fd[0] fd[1]

Parent process

pipe

fd[0] fd[1]

Child process

Kernel

pipe() system call

Half-duplex mode

Becomes simplex

 The "parent" process creates a pipe

 Performs a fork

 The child process inherits the file descriptors

 One of the two processes (e.g., the parent) writes
in the pipe, while the other (e.g., the child) reads
from the pipe

 The unused descriptor can be closed

19Operating Systems

Pipe I/O

 The descriptor of the pipe is an integer number

 R/W on pipes do not differ to R/W on files

 Use read and write system calls

 It is possible to have more than one reader and
writer on a pipe, but

 The standard case is to have a single writer and a
single reader

 Data can be interlaced using more than one writer

 Using more readers, it is undetermined which reader
will read the next data from the pipe

20Operating Systems

Pipe I/O

 System call read

 Blocks the process if the pipe is empty (it is blocking)

 If the pipe contains less bytes than the ones specified
as argument of the read, it returns only the bytes
available on the pipe

 If all file descriptors referring to the write-end of a pipe
have been closed, then an attempt to read from the
pipe will see end-of-file (read returns 0)

21Operating Systems

Pipe I/O

 System call write

 Blocks the process if the pipe is full (it is blocking)

 The dimension of the pipe depends on the architecture
and implementation

● Constant PIPE_BUF defines the number of bytes that

can be written atomically on a pipe

● Standard value of PIPE_BUF is 4096 on Linux

 If all file descriptors referring to the read-end of a pipe
have been closed, then a write to the pipe will cause a
SIGPIPE signal to be generated for the calling process

22Operating Systems

Example

 Create a pipe shared between parent and child,
that is

 Create a pipe that is common between a parent
process and a child process

 Transfer a single character from the parent
process to the child process

 Logical flow

 Pipe creation

 Process fork

 Close the unused-ends of the pipe

 read and write operations at the two pipe ends

23Operating Systems

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main () {

int n;

int file[2];

char cW = 'x';

char cR;

pid_t pid;

if (pipe(file) == 0) {

pid = fork ();

if (pid == -1) {

fprintf(stderr, "Fork failure");

exit(EXIT_FAILURE);

}

Example

Firstly create the pipe

Then fork the process

24Operating Systems

if (pid == 0) {

// Child reads

close (file[1]);

n = read (file[0], &cR, 1);

printf("Read %d bytes: %c\n", n, cR);

exit(EXIT_SUCCESS);

} else {

// Parent writes

close (file[0]);

n = write (file[1], &cW, 1);

printf ("Wrote %d bytes: %c\n", n, cW);

}

}

exit(EXIT_SUCCESS);

}

Example

Close unused end
(good practice)

Child reads

Parent writes

The two process synchronize
because read and write are

possibly blocking. More complex data communication
requires a communication protocol

25Operating Systems

Example

 Do pipes have infinite dimensions?

 Which is the dimension of a pipe?

 Since write is a blocking system call, we can

continue to write a byte to the pipe until the
process is blocked because the pipe is full

26Operating Systems

...

#define SIZE 512*1024

int fd[2];

int main () {

...

int i, n, nR, nW;

char c = '1';

setbuf (stdout, 0);

...

pipe(fd);

n = 0;

Example

Firstly create the pipe

27Operating Systems

if (fork()) {

fprintf (stdout, "\nParent PID=%d\n", getpid());

sleep (1);

for (i=0; i<SIZE; i++) {

nW = write (fd[1], &c, 1);

n = n + nW;

fprintf (stdout, "W %d\r", n);

}

} else {

fprintf (stdout, "Child PID=%d\n", getpid());

sleep (10);

for (i=0; i<SIZE; i++) {

nR = read (fd[0], &c, 1);

n = n + nR;

fprintf (stdout, "\t\t\t\tR %d\r", n);

}

}

Example

Parent writes a byte
at a time

The child reads
after 10 seconds

\r = CR = Carriage Return
(not Line Feed)

Then fork the process

28Operating Systems

> ./pgrm

Parent PID=2272

Child PID=2273

W 0

...

W 65536

...

W 65536 R 0

...

W 524288 R 524288

Example

The number of written bytes
increases up to the

dimension of the pipe

After 10 seconds the child
begins to read the pipe,

consuming its data

When the pipe is full, write
blocks the parent

R & W are concurrent, the
processes terminate after

SIZE writes and reads

29Operating Systems

Example

 What happens if a pipe is not used according to
the half-duplex protocol?

 It is possible to change read and write operations?

 It is possible to have multiple readers and/or
writers?

 The result is undefined, but it is possible to
obtain corrected results for the first case

30Operating Systems

int fd[2];

setbuf (stdout, 0);

pipe (fd);

if (fork()!=0) {

while (1) {

if (strcmp(argv[1],"P")==0||strcmp(argv[1],"PC")==0) {

c = 'P';

fprintf (stdout, "Parent writes %c\n", c);

write (fd[1], &c, 1);

}

sleep (2);

if (strcmp(argv[1],"C")==0||strcmp(argv[1],"PC")==0) {

read (fd[0], &c, 1);

fprintf (stdout, "Parent reads %c\n", c);

}

sleep (2);

}

wait ((int *) 0);

}

Example

If argv[1] is "P"
the parent writes only

and the child reads only

If argv[1] is "C"
the parent reads only

and the child writes only

Program receives a string in
argv[1]

31Operating Systems

} else {

while (1) {

if (strcmp(argv[1],"P")==0||strcmp(argv[1],"PC")==0) {

read (fd[0], &c, 1);

fprintf (stdout, "Child reads %c\n", c);

}

sleep (2);

if (strcmp(argv[1],"P")==0||strcmp(argv[1],"PC")==0) {

c = 'C';

fprintf (stdout, "Child writes %c\n", c);

write (fd[1], &c, 1);

}

sleep (2);

}

exit (0);

}

Example

If argv[1] is "PC"
parent and child

alternate write operations

32Operating Systems

> ./pgrm P

Parent writes P

Child reads P

...

^C

> ./pgrm C

Child Write C

Parent Read C

...

^C

> ./pgrm PC

Parent writes P

Child reads P

Child writes C

Parent reads C

...

^C

Example

Only parent writes

Only child writes

Parent and child
alternate writing

Every 2 secs

How they would
alternate without

sleep?

