Processes

Inter-process communication (and pipe)
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

Operating Systems 7 2

Independent and cooperating processes

% Concurrent processes can be
» Independent
» Cooperating
** An independent process
» Cannot be influenced by other processes
» Cannot influence other processes

< A set of cooperating processes

» can cooperate only by sharing data or by
exchanging messages

» Both require appropriate synchronization
mechanisms

Operating Systems 7 3

V¥

Inter-Process Communication

% Information sharing among processes is referred
to as IPC or InterProcess Communication
% The main communication models are based on
» Shared memory
» Message exchange

Operating Systems

Communication models

% Shared memory
» Sharing of a memory area and
writing of data in this area

= Normally the kernel does not
allow a process to access the
memory of another process

= Processes must agree on the:

e Access rights
e Access strategies
o e.g., Producer-consumer with

bounded or unbounded buffer

Shared
Memory Area

Operating Systems

Shared
Memory Area

Communication models

> The most common methods for
shared buffer use a
= File

e Sharing the name or the file

pointer or descriptor before
fork/exec

= Mapped file in memory
e A file mapped in memory
associates a shared memory
region to a file
» These techniques allow sharing a

large amount of data

e

Operating Systems

Communication models

% Message exchange

» Communication takes place
through the exchange of
messages

> Need to setup of a
communication channel

» Useful for exchanging limited
amounts of data
» Uses system calls
= which request kernel intervention
= and introduce overhead

Operating Systems 1= 7

Communication channels

<+ A communication channel can offer direct or
indirect communication

» Direct

= [s performed naming the sender or the receiver
e send (to_process, message)

® receive from process &message
’

> Indirect
= Performed through a mailbox
Process A e send (mailboxAddress, message)

Process B ® receive (mailBoxAddress, &message)

Operating Systems 8

1 '—, -

Communication channels

%+ A communication channel can be characterized by

» Synchronization

= Both sending or receiving messages can be
e Synchronous, i.e., blocking
e Asynchronous, i.e., non-blocking

» Capacity

= If the capacity is zero, the channel cannot allow
waiting messages (no buffering); the sender blocks

——, waiting for the receiver

—— = If the capacity is limited the sender blocks when the

queue is full

If the capacity is unlimited the sender does not
block

Operating Systems 17~ 9

V¥

Communication channels

Extensions of the pipes not
covered in this course

% UNIX makes available
> Half-duplex pipes
> FIFOs
» Full-duplex pipes
» Named full-duplex pipes
» Message queues

> Semaphores Network process communication.
> Sockets . Each process is identified by a

socket to which it is associated a
» STREAMS

For process synchronization }

network address

Not all the types of
communication are supported
by all the UNIX versions

Used starting from UNIX System V }

Operating Systems 17~ 10

K

% Pipes are the oldest form of communication in
UNIX SO
% Allow creating a data stream among processes
» The user interface to a pipe is similar to file access

> A pipe is accessed by means of two descriptors
(integers), one for each end of the pipe

» A process (P,) writes to an end of the pipe,
another process (P,) reads from the other end

P1 Q(Oq Pz

Operating Systems

Simplex, for synchronization
problems

% Historically, they have been
> half-duplex

= Data can flow in both directions (from P, to P, or
from P, to P,), but not at the same time

= Full-duplex models have been proposed more
recently, but they have limited portability

> A pipe can be used for communication among a

parent and its childs, or among processes with a
common ancestor

= The file descriptor must be common to the two
communicating processes and therefore these
processes must have a common ancestor

Terminology:
Simplex: Mono-directional

Half-Duplex: One-way, or bidirectional, but alternate (walkie-talkie)
Full-Duplex: Bidirectional (telephone)

Operating Systems 12

pipe() system call

4 N

#include <unistd.h>

int pipe (int fileDescr[2]);

% System call pipe creates a pipe
% It returns two file descriptors in vector fileDescr

> fileDescr[0]: Typically used for reading
fileDesrc[1]: Typically used for writing

» The input stream written on fileDescr[1]
corresponds to the output stream read on
fileDescr[0]

Operating Systems I 13

pipe() system call

4 N

#include <unistd.h>

int pipe (int fileDescr[2]);

(S J

+»» Returned values
» 0 on success
» -1 on error

Operating Systems Ny 14

pipe() system call

%+ Using a pipe inside a process is possible but not
much useful

Process Process
fd[0] fd[1] E> fd[0] fd[1]
pipe Kernel
pipe

The data flows through a
synchronized kernel buffer

Operating Systems 3]

' 1E

pipe() system call

% A pipe typically allows a parent and a child to
communicate

%+ Parent must fork (e.g., by means of the fork()
system call) after creating the pipe

Parent process

[J

Operating Systems

pipe() system call

» The "parent" process creates a pipe

Parent process

fd[0] fd[1]]

pipe
Kernel]
4

Operating Systems 1= I

pipe() system call

» The "parent" process creates a pipe
> Performs a fork
» The child process inherits the file descriptors

If the pipe were made after the fork(),
the descriptors would not be inherited

Parent process Child process

fd[0] fd[1]] fd[0] fd[1_]_]

pipe
)
Kernel
| %

Operating Systems 17 18

V¥

pipe() system call

» The "parent” process creates a pipe

> Performs a fork | Halfduplex mode
» The child process inherits the file descriptors

» One of the two processes (e.g., the parent) writes
in the pipe, while the other (e.q., the child) reads
from the pipe

» The unused descriptor can be closed
Parent process Child process

Becomes simplex]
[fd[O] fd[1]] fd[0] fd[1]]

pipe

Kernel

Operating Systems 17'~= 19

» The descriptor of the pipe is an integer number

% R/W on pipes do not differ to R/W on files
» Use read and write system calls
> It is possible to have more than one reader and
writer on a pipe, but

= The standard case is to have a single writer and a
single reader

= Data can be interlaced using more than one writer

= Using more readers, it is undetermined which reader
will read the next data from the pipe

Operating Systems o 20

> System call read
= Blocks the process if the pipe is empty (it is blocking)

= If the pipe contains less bytes than the ones specified
as argument of the read, it returns only the bytes
available on the pipe

= If all file descriptors referring to the write-end of a pipe
have been closed, then an attempt to read from the
pipe will see end-of-file (read returns 0)

Operating Systems o 21

> System call write
= Blocks the process if the pipe is full (it is blocking)
= The dimension of the pipe depends on the architecture

and implementation

e Constant PIPE_BUF defines the number of bytes that
can be written atomically on a pipe

e Standard value of PIPE_BUF is 4096 on Linux

= If all file descriptors referring to the read-end of a pipe
have been closed, then a write to the pipe will cause a
SIGPIPE signal to be generated for the calling process

Operating Systems Ny 22

% Create a pipe shared between parent and child,
that is

» Create a pipe that is common between a parent
process and a child process

» Transfer a single character from the parent
process to the child process

% Logical flow
» Pipe creation
> Process fork

» Close the unused-ends of the pipe
» read and write operations at the two pipe ends

Operating Systems

23

|

p

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main () {
int n;
int file[2];
char cW = 'x';
char cR;
pid t pid;
if (pipe(file) == 0) {
pid = fork ()
if (pid == -1) {
fprintf (stderr, "Fork failure");
exit (EXIT FAILURE) ;

Firstly create the pipe

Then fork the process

}

A

Operating Systems

24

|

p

&

if (pid == 0) {
// Child reads
close (file[l]):

n = read (file[0], &cR, 1);
printf ("Read %d bytes: %c\n", n, cR);

exit (EXIT SUCCESS) ;
} else {

// Parent writes

close (file[O0])

n = write (file[l], &cW,

printf ("Wrote %d bytes:

}

}
exit (EXIT_ SUCCESS) ;

More complex data communication
requires a communication protocol

Close unused end N\

(good practice)

Child reads

Parent writes

1);
$c\n", n, cW);

The two process synchronize
because read and write are
possibly blocking.

Operating Systems 23

' 1E

%+ Do pipes have infinite dimensions?
» Which is the dimension of a pipe?
% Since write is a blocking system call, we can

continue to write a byte to the pipe until the
process is blocked because the pipe is full

Operating Systems 26

4 A

#define SIZE 512*1024

int £d[2];

int main () {

int i, n, nR, nW;
char ¢ = '1"';
setbuf (stdout, 0);

Firstly create the pipe]

pipe (£d) ;
n=20;

A)

Operating Systems

27

|

Then fork the process

p

if (fork()) {
fprintf (stdout, "\nParent PID=%d\n", getpid()):

sleep (1)
for (i=0; i<SIZE; i++) { :
P
nW = write (£d[1], &c, 1); arengt"va”ttf;: R

n =n+ nW;
fprintf (stdout, "W %d\r", n);

}

} else {
fprintf (stdout, "Child PID=%d\n", getpid()):;
sleep (10);
for (i=0; i<SIZE; i++) {
nR = read (£4[0], &c, 1);
n =n + nR;
fprintf (stdout, "\t\t\t\tR %d\r", n);

The child reads
after 10 seconds

}
} \r = CR = Carriage Return
\\\7 (not Line Feed)

N\

Operating Systems i1 28

/ \ The number of written bytes
> ./pgrm increases up to the
Parent PID=2272 dimension of the pipe

Child PID=2273

c . j When the pipe is full, write }

L — blocks the parent
.

W 65536

After 10 seconds the child
begins to read the pipe,
consuming its data

W 65536 R 0

W 524288 R 524288

(&

[\
_

R & W are concurrent, the

ﬂ processes terminate after

SIZE writes and reads

Operating Systems 17 29

<+ What happens if a pipe is not used according to
the half-duplex protocol?

» It is possible to change read and write operations?

> It is possible to have multiple readers and/or
writers?

% The result is undefined, but it is possible to
obtain corrected results for the first case

Operating Systems

30

|

Program receives a string in

argv[1]

int £d4[2]; If argv[1] is "P"

setbuf (stdout, 0); the parent writes only

pipe (fd); and the child reads only

if (fork()!=0) {

while (1) {
if (strcmp(argv[l],"P")==0||strcmp(argv[1l],"PC")==0) {
c = "'P';

fprintf (stdout, "Parent writes %c\n", c);
write (£d[1], &c, 1);
}
sleep (2);
if (strcmp(argv[l],"C")==0||strcmp(argv([1l],"PC")==0) {
read (£d4[0], &c, 1);
fprintf (stdout, "Parent reads %c\n", c);
}
sleep (2);
}
wait ((int *) O0);
}

If argv[1] is "C"
the parent reads only
and the child writes only

N

) 4

Operating Systems

31

|

p

}

}

\

else {
while (1) {
if (strcmp(argv[l],"P")==0||strcmp(argv[1l],"PC")==0) {

read (£d4[0], &c, 1);
fprintf (stdout, "Child reads %c\n", c);

}
sleep (2);
if (strcmp(argv[l],"P")==0||strcmp(argv[1l],"PC")==0) {
c = |Cl ,.
fprintf (stdout, "Child writes %c\n", c);
write (£d[1l], é&c, 1);
}
sleep (2);
}
it (0); .
e () If argv[1] is "PC"
parent and child
alternate write operations

N\

4

Operating Systems 32

> ./pgrm P 2 Only parent writes J
Parent writes P

Child reads P

e
> ./pgrm C
Child Write C —

Parent Read C

Only child writes J

e

> ./pgrm PC
Parent writes P
Child reads P
Child writes C

Parent reads C

Parent and child
alternate writing
Every 2 secs

How they would
alternate without
sleep?

b | ey |

N0 Y

