
Interrupts

Interrupts (Outside the course topics)
Not required at the exam

Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Instruction cycle

Start Halt
Fetch next

instruction

Decode

instruction

Execute

instruction

Fetch operand(s)

3Operating Systems

Interrupts

 Interrupt is a signal to the CPU generated by
hardware or by software indicating an event that
needs immediate attention

 Interrupts are generated by timers and devices

 are asynchronous, i.e., they are generated at
unpredictable times, or during the execution of
any program instruction

4Operating Systems

Instruction cycle with interrupt

Start Halt
Fetch next

instruction

Decode

instruction

Execute

instruction

Check

Interrupt

Fetch operand(s)

Interrupt disabled

Interrupt enabled

5Operating Systems

Interrupts

 An interrupt signal makes the control flow of a
CPU to be moved from the current executing
code to an interrupt handler routine that
executes another code before returning to the
original code.

 It is implemented by

 saving the current value of the program counter
(PC) and status (PSW) registers into a stack, so
that the interrupted code can restart from the
next instruction

 loading in the PC register the address of the
routine corresponding to the specific interrupt

6Operating Systems

Program Status Word

 The PSW contains

 condition codes

 interrupt enable/disable flags

 kernel/user mode flag

 …

7Operating Systems

Interrupt Vector

Interrupt

Handler

116 int_h_10()

iret

……

108

164

……. ……. ……. ……. ……. …….

main

20000

…….

20064

20068

…….

23000

……. ……. ……. ……. ……. …….

Stack

52540 main PSW

52544 20068

52548

……

Memory Address Content

Interrupt

vector

6

10 116

14 PSW of

int_h_10()

16

…… ……

10

PC 20068

SP 52548

PSW main

PSW

8Operating Systems

Issues

 An interrupt needs fast processing, that can be
obtained splitting the task in two phases

 Urgent or critical operations (e.g., get a keyboard

code)

 Operations that can be delayed (e.g., manage the
code according to its meaning)

 Nested interrupt processing

 Processing of critical regions with disabled
interrupts

9Operating Systems

Enable/Disable Interrupt (Intel)

 Each interrupt is identified by a number between
0 e 255, which Intel calls vector

 The assembler instructions

 disable interrupt cli

 enable interrupt sti

manage bit IF of the register eflags, which is

tested in AND with masking

10Operating Systems

Interrupt management

 Disable interrupts while an interrupt is being
processed

 Processor ignores any new interrupt request
signals

 Interrupts remain pending until the processor
enables interrupts

 After interrupt handler routine completes, the
processor checks for additional interrupts

 Higher priority interrupts cause lower-priority
interrupts to wait.

 Causes a lower-priority interrupt handler to be
interrupted

11Operating Systems

Exceptions

 Exception differ from interrupts because they
are synchronous

 Program errors

 System call (int or sysenter instructions)

 Page faults

 Fault conditions

12Operating Systems

Exceptions

 Exception are divided in 3 groups depending of
the value of register eip, which is saved into the

stack when the CPU raises an exception

 Faults

 The fault condition can be corrected and the process
can restart from the same instruction

 Traps

 Used mainly for supporting debug

 Abort

 The error condition is such that it is impossible to
decide which value eip should have

13Operating Systems

Exceptions examples

 Program Errors:

 divisions by zero

 illegal instruction

 memory parity error

 . . .

 Protection violations

 memory violation

14Operating Systems

Exceptions examples

 La gestione di un segnale implica tre fasi

 Generazione del segnale

 Avviene quando il processo sorgente effettua
l’evento necessario

 Consegna del segnale

 Un segnale non consegnato risulta pendente

 Avviene quando il processo destinatario assume le
azioni richieste dal segnale

 Un segnale ha un tempo di vita che va dalla sua
generazione alla sua consegna

#include <stdio.h>

int i, j, *pk; // global variables initialized to 0

int main(){

scanf("%d", &i);

j=2;

j = j / i; // possible division by 0 exception

printf("%d\n", j);

// Correct program

pk = &i; // pk set to the address of variable i

scanf("%d", pk);

printf("i contains: %d %d\n", i, *pk);

// Program generates here a memory violation exception

pk = 0;

scanf("%d", pk);// tries to write where pk points to,

// a memory location out of user domain

printf("i contains: %d %d\n", i, *pk);

return 0;

}

15Operating Systems

Programmed exceptions

 A programmed exception occurs because a
specific instruction is executed

 int or int3

 into (check for overflow)

 bound (check on address bound)

 Programmed exceptions, or software interrupts,

allow

 implementing system calls

 signal events to the debugger

