Interrupts (Outside the course topics)
Not required at the exam
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

Operating Systems

Fetch operand(s)

Fetch nex
¢ .7
nstruction

F

Decode h Execute
- — . "1
nstruction nstruction

Operating Systems T 3

% Interrupt is a signal to the CPU generated by
hardware or by software indicating an event that
needs immediate attention

% Interrupts are generated by timers and devices

> are asynchronous, i.e., they are generated at
unpredictable times, or during the execution of
any program instruction

Operating Systems

Instruction cycle with interrupt

Fetch next
Instruction

Fetch operand(s)

>,

Decode

Instruction

Check

."

" | Execute
ﬁl -
instruction

——————————————

Interrupt

Interrupt enabled

Operating Systems 5

< An interrupt signal makes the control flow of a
CPU to be moved from the current executing
code to an interrupt handler routine that
executes another code before returning to the
original code.

% It is implemented by

» saving the current value of the program counter
(PC) and status (PSW) registers into a stack, so
that the interrupted code can restart from the
next instruction

> loading in the PC register the address of the
routine corresponding to the specific interrupt

A

Operating Systems

Program Status Word

% The PSW contains
» condition codes
> interrupt enable/disable flags
> kernel/user mode flag
> ...

Operating Systems 7

116 int h 10() Memory Address Content
Interrupt 6
Handler 108
164 _ 10 116
iret
Interrupt 14 PSW of
...... e eeeeei e eeeees e veeeer s eesees e seeees e vector int_h_lo ()
20000 16
main (... L 0 . | ..
= | 20064
10
20068 \
23000
...... e PC 20068
52540 main PSW SP 52548
Stack 52544 20068 / :
— PSW | main
52548 PSW

Operating Systems T 8

<+ An interrupt needs fast processing, that can be
obtained splitting the task in two phases

» Urgent or critical operations (e.g., get a keyboard
code)

» Operations that can be delayed (e.g., manage the
code according to its meaning)

» Nested interrupt processing

% Processing of critical regions with disabled
interrupts

Operating Systems 9

Enable/Disable Interrupt (Intel)

%+ Each interrupt is identified by a number between
0 e 255, which Intel calls vector

%+ The assembler instructions
> disable interrupt cli
> enable interrupt sti

manage bit IF of the register eflags, which is
tested in AND with masking

Operating Systems T 10

Interrupt management

% Disable interrupts while an interrupt is being
processed

» Processor ignores any new interrupt request
signals

» Interrupts remain pending until the processor
enables interrupts

> After interrupt handler routine completes, the
processor checks for additional interrupts
*» Higher priority interrupts cause lower-priority
interrupts to wait.

» Causes a lower-priority interrupt handler to be
interrupted

Operating Systems - § 11

Exceptions

<+ Exception differ from interrupts because they
are synchronous

» Program errors
» System call (int or sysenter instructions)

> Page faults
» Fault conditions

Operating Systems L 188 12

LY

%+ Exception are divided in 3 groups depending of
the value of register eip, which is saved into the
stack when the CPU raises an exception

> Faults

= The fault condition can be corrected and the process
can restart from the same instruction

> Traps
= Used mainly for supporting debug
> Abort

= The error condition is such that it is impossible to
decide which value eip should have

Operating Systems

Exceptions examples

< Program Errors:
> divisions by zero

> illegal instruction
» memory parity error
> ...

+* Protection violations
» memory violation

Operating Systems 14

|

/ #include <stdio.h> N\
int i, j, *pk; // global variables initialized to 0
int main () {
scanf ("%d", &i);
j=2;
j =3/ i; // possible division by 0 exception
printf ("$d\n", j);
// Correct program
pk = &i; // pk set to the address of variable i
scanf ("%d", pk);
printf ("i contains: %d %d\n", i, *pk);
// Program generates here a memory violation exception
pk = 0;
scanf ("%d", pk);// tries to write where pk points to,
// a memory location out of user domain
printf ("i contains: %d %d\n", i, *pk);
return O;

\J /

Operating Systems 17 3]

LY

Programmed exceptions

% A programmed exception occurs because a
specific instruction is executed
» int or int3

» into (check for overflow)
» bound (check on address bound)

%+ Programmed exceptions, or software interrupts,
allow
» implementing system calls
» signal events to the debugger

