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Interrupts 

 Interrupt is a signal to the CPU generated by 
hardware or by software indicating an event that 
needs immediate attention

 Interrupts are generated by timers and devices

 are asynchronous, i.e., they are generated at 
unpredictable times, or during the execution of 
any program instruction 
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Interrupts

 An interrupt signal makes the control flow of a 
CPU to be moved from the current executing 
code to an interrupt handler routine that 
executes another code before returning to the 
original code.

 It is implemented by 

 saving the current value of the program counter 
(PC) and status (PSW) registers into a stack, so 
that the interrupted code can restart from the 
next instruction

 loading in the PC register the address of the 
routine corresponding to the specific interrupt
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Program Status Word

 The PSW contains

 condition codes 

 interrupt enable/disable flags

 kernel/user mode flag

 …
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Interrupt Vector
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Issues

 An interrupt needs fast processing, that can be 
obtained splitting the task in two phases

 Urgent or critical operations (e.g., get a keyboard 

code)

 Operations that can be delayed (e.g., manage the 
code according to its meaning)

 Nested interrupt processing

 Processing of critical regions with disabled 
interrupts
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Enable/Disable Interrupt (Intel)

 Each interrupt is identified by a number between 
0 e 255, which Intel calls vector

 The assembler instructions 

 disable interrupt cli

 enable interrupt sti

manage bit IF of the register eflags, which is  

tested in AND with masking
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Interrupt management

 Disable interrupts while an interrupt is being 
processed

 Processor ignores any new interrupt request 
signals

 Interrupts remain pending until the processor 
enables interrupts

 After interrupt handler routine completes, the 
processor checks for additional interrupts

 Higher priority interrupts cause lower-priority 
interrupts to wait. 

 Causes a lower-priority interrupt handler to be 
interrupted



11Operating Systems

Exceptions

 Exception differ from interrupts because they 
are  synchronous

 Program errors

 System call  ( int or sysenter instructions)

 Page faults

 Fault conditions
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Exceptions

 Exception are divided in 3 groups  depending of 
the value of register eip, which is saved into the 

stack when the CPU raises an exception

 Faults

 The fault condition can be corrected and the process 
can restart from the same instruction

 Traps

 Used mainly for supporting debug 

 Abort

 The error condition is such that  it is impossible to 
decide which value  eip should have
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Exceptions examples

 Program Errors:

 divisions by zero

 illegal instruction

 memory parity error

 . . .

 Protection violations

 memory violation
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Exceptions examples

 La gestione di un segnale implica tre fasi

 Generazione del segnale

 Avviene quando il processo sorgente effettua
l’evento necessario

 Consegna del segnale

 Un segnale non consegnato risulta pendente

 Avviene quando il processo destinatario assume le 
azioni richieste dal segnale

 Un segnale ha un tempo di vita che va dalla sua
generazione alla sua consegna

#include <stdio.h>

int i, j, *pk; // global variables initialized to 0

int main(){  

scanf("%d", &i);

j=2;

j = j / i; // possible division by 0 exception

printf("%d\n", j);

// Correct program

pk = &i; // pk set to the address of variable i

scanf("%d", pk);

printf("i contains: %d %d\n", i, *pk);

// Program generates here a memory violation exception

pk = 0;

scanf("%d", pk);// tries to write where pk points to,

// a memory location out of user domain

printf("i contains: %d %d\n", i, *pk);

return 0;

}
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Programmed exceptions

 A programmed exception occurs because a 
specific instruction is executed

 int or int3

 into (check for overflow)

 bound (check on address bound)

 Programmed exceptions, or software interrupts, 

allow

 implementing system calls

 signal events to the debugger


