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Interrupts 

 Interrupt is a signal to the CPU generated by 
hardware or by software indicating an event that 
needs immediate attention

 Interrupts are generated by timers and devices

 are asynchronous, i.e., they are generated at 
unpredictable times, or during the execution of 
any program instruction 
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Interrupts

 An interrupt signal makes the control flow of a 
CPU to be moved from the current executing 
code to an interrupt handler routine that 
executes another code before returning to the 
original code.

 It is implemented by 

 saving the current value of the program counter 
(PC) and status (PSW) registers into a stack, so 
that the interrupted code can restart from the 
next instruction

 loading in the PC register the address of the 
routine corresponding to the specific interrupt



6Operating Systems

Program Status Word

 The PSW contains

 condition codes 

 interrupt enable/disable flags

 kernel/user mode flag

 …
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Interrupt Vector
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Issues

 An interrupt needs fast processing, that can be 
obtained splitting the task in two phases

 Urgent or critical operations (e.g., get a keyboard 

code)

 Operations that can be delayed (e.g., manage the 
code according to its meaning)

 Nested interrupt processing

 Processing of critical regions with disabled 
interrupts
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Enable/Disable Interrupt (Intel)

 Each interrupt is identified by a number between 
0 e 255, which Intel calls vector

 The assembler instructions 

 disable interrupt cli

 enable interrupt sti

manage bit IF of the register eflags, which is  

tested in AND with masking
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Interrupt management

 Disable interrupts while an interrupt is being 
processed

 Processor ignores any new interrupt request 
signals

 Interrupts remain pending until the processor 
enables interrupts

 After interrupt handler routine completes, the 
processor checks for additional interrupts

 Higher priority interrupts cause lower-priority 
interrupts to wait. 

 Causes a lower-priority interrupt handler to be 
interrupted
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Exceptions

 Exception differ from interrupts because they 
are  synchronous

 Program errors

 System call  ( int or sysenter instructions)

 Page faults

 Fault conditions
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Exceptions

 Exception are divided in 3 groups  depending of 
the value of register eip, which is saved into the 

stack when the CPU raises an exception

 Faults

 The fault condition can be corrected and the process 
can restart from the same instruction

 Traps

 Used mainly for supporting debug 

 Abort

 The error condition is such that  it is impossible to 
decide which value  eip should have
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Exceptions examples

 Program Errors:

 divisions by zero

 illegal instruction

 memory parity error

 . . .

 Protection violations

 memory violation
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Exceptions examples

 La gestione di un segnale implica tre fasi

 Generazione del segnale

 Avviene quando il processo sorgente effettua
l’evento necessario

 Consegna del segnale

 Un segnale non consegnato risulta pendente

 Avviene quando il processo destinatario assume le 
azioni richieste dal segnale

 Un segnale ha un tempo di vita che va dalla sua
generazione alla sua consegna

#include <stdio.h>

int i, j, *pk; // global variables initialized to 0

int main(){  

scanf("%d", &i);

j=2;

j = j / i; // possible division by 0 exception

printf("%d\n", j);

// Correct program

pk = &i; // pk set to the address of variable i

scanf("%d", pk);

printf("i contains: %d %d\n", i, *pk);

// Program generates here a memory violation exception

pk = 0;

scanf("%d", pk);// tries to write where pk points to,

// a memory location out of user domain

printf("i contains: %d %d\n", i, *pk);

return 0;

}
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Programmed exceptions

 A programmed exception occurs because a 
specific instruction is executed

 int or int3

 into (check for overflow)

 bound (check on address bound)

 Programmed exceptions, or software interrupts, 

allow

 implementing system calls

 signal events to the debugger


