
UNIX/Linux Operating System

Shells
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Pgrms

Shell

Unix
kernel

Hw

 The outermost layer of the OS

 It provides the user interface, which interprets the
user commands

 It was the unique interface before the introduction
of graphics servers

 In Unix, a shell is not part of the kernel

 It is a normal user process

 Similar to DOS but

more powerful

 Offers a programming environment

"native of the OS"

Introduction to shells

Users

3Operating Systems

Introduction to shells

 A shell allows

 Submitting commands on command line

 The shell automatically understands when the
command ends and executes it immediately

 Writing shell programs (scripts)

 Storing commands in a script file

 Script execution by submitting the script file

 Writing a script avoids

 Typing complex command sequences repeatedly

 Automating tedious, repetitive and error prone
tasks

4Operating Systems

Main shells

Shell Characteristics

Bourne shell (sh) Original shell, often used in Unix system
programming

C-shell (csh) Berkeley shell, very good for interactive usage,
and for user scripts. Uses a syntax similar to C
language

Korn shell (ksh) Bourne shell rewritten by AT&T to be similar to
C-shell

Tahoe C-shell
(tcsh)

Tahoe project, an improved C-shell (superset)

Bourne again
shell (bash)

Is compatible but extends csh and ksh
Standard GNU Shell; POSIX conformant;
powerful but not complex.
Most sh scripts are interpreted by bash without
changes

List available shells:
cat /etc/shells

5Operating Systems

Introduction to shells

 Different shells may accept slightly different
commands

 Often/bin/sh is a link to the current shell

 The default shell can be modified

 chsh (change login shell)

 Version in use

 /bin/bash -version

 echo $BASH_VERSION

tcsh bash

set myVar = ”ciao” myVar=”ciao”

setenv MY_DIR /home/usr/ export MY_VAR=/home/usr/

if ($str1==$str2) then … else …
endif

if test $str1=$str2 then … else … fi
if [$str1=$str2]; then … else … fi

6Operating Systems

shell execution

 A shell can be activated

 Automatically at login

 Nested within another shell

 As a user program

● /bin/tcsh, /bin/bash, ...

 A shell exit by typing

 Command exit

 The EOF character (usually Ctrl-d)

 Exiting an inner shell will return to the outer shell

7Operating Systems

 At login (and exit) a shell looks for, and executes,
some configuration files that contain initialization
(or termination) commands

 Startup files differ in

 Login files

 Shell is executed after authentication in the system
(password)

 Non-login files

 The shell is executed through an icon or system menu

Introduction to bash

8Operating Systems

 For each login with password, the shell executes

 Global scripts
 /etc/profile

 User scripts (executes the first existing file among)
● ~/.bash_profile

● ~/.bash_login

● ~/.profile

 There is an error in case of incorrect or unreadable
file

Introduction to bash

9Operating Systems

 For each login without a password, the shell
executes

 ~/.bashrc

 This file often refers to ~/.bashrc_profile

 It is also the file typically executed in remote login

 For each logout, the shell executes

 ~/.bash_logout

Introduction to bash

10Operating Systems

shell command expansion

 Some characters have special meaning within the
shell

 bash provide complex substitution mechanisms

 After dividing the command line into tokens, the
shell expands or solves these tokens, i.e., it applies
different types of replacement

 Braces, tilde, variables and parameters, commands,
arithmetic expressions, etc.

 The substitution is complex and takes place with a
specific order

11Operating Systems

Parentheses

 Parentheses (), [], {}

 Enclose variables, arithmetic operations, etc.

 In some cases, they are subject to automatic
expansion (brace expansion)

 name=Jean

 echo $namePaul

 echo {$name}Paul

{Jean}Paul

 echo ${name}Paul

JeanPaul

echo: print command

This variable
does not exist

12Operating Systems

Quoting

 "Quoting" means the use of for quotation marks

 Quotes ' '

 Variables within quotes are not expanded

 They cannot be nested

 Double quotes " "

 Variables within double quotes are expanded

 They can be nested

 Backslash \

 Identifies the escape character, which remove the
special meaning of the character that follows it

13Operating Systems

 myVar="A string"

 echo $myVar

A string

 echo 'v = $myVar'

v = $myVar

 echo "v = $myVar"

v = A string

 echo \$myVar

$myVar

 echo "double quote\""

double quote”

Examples

" … "  expansion

' … ' 

no expansion

\ cancels the meaning

of the next character,
which becomes a
"meta-character"

Variable usage:
- set without $
- used with $

14Operating Systems

Using the output of command

 The standard output of a command can be
captured by

 Enclosing the command in $(...)

 Enclosing the command in backquotes ``

 In particular, the output of a command can be
stored in a variable

out=`cat file.txt`

echo $out

... file content ...

out=`< file.txt`

echo $out

... file content ...

d=$(date)

echo $d

Fri Nov 22 10:00:0 \

CET 2013

d=`date`

...

15Operating Systems

 In a shell, a command can be executed

 Directly
 cd /home ; ls

 Indirectly
 (cd /home; ls)

Command execution

The current shell executes the
command; change directory to

/home; executes ls; at the end the
working directory is /home

The current shell executes the
command in a subprocess; change
directory to /home; executes ls; at
the end the working directory is the

original directory

16Operating Systems

history

 A shell

 Keeps the list of the last submitted commands

 In bash, the list is stored in file .bash_history

● Stored in the user home directory

 Shell commands allow to reference this list

Command Meaning

history Displays the list of the last submitted commands

!n Executes command number n in the history list

!str Executes last command beginning by str

^str1^str2 Executes last command replacing str1 by str2

17Operating Systems

Aliasing

 In shell you can define new names to existing
commands

 The alias command allows defining these names

 alias name="string"

● defines a new alias for "string"

 The shell maintains a list of aliases
 alias

● provides the list of active aliases used in the shell

 Old aliases can be deleted

 unalias name

● Deletes the alias name from the shell

No blanks near symbol =

18Operating Systems

Examples

 alias

alias egrep='egrep --color=auto'

alias emacs='emacs -r -geometry 100x36 -fn 9x15 &'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias ls='ls --color=auto'

alias mx='xdvi -mfmode ljfour:1200'

 alias ll= "ls -la"

 unalias emacs

 unalias ll

Existent aliases

Definition of a new
alias

Deletion of a pre-existing alias
(the eventual command returns

to be what it was)

