
UNIX/Linux Operating System

Shell scripts
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Introduction to shell scripts

 Shell languages are interpreted languages

 There is no explicit compilation

 Pros & Cons

 Shell available in every UNIX / Linux environment

 Faster production cycle

 Lower run-time efficiency

 Fewer debugging possibilities

 Used to write software

 "Quick and dirty"

 Sometimes a prototype, which is then translated
into a low-level language such as C

3Operating Systems

Introduction to scripts

 BASH vs. Python (and other)

 Choice

 The main strength of BASH with respect to other
languages (python, ruby, lua, etc.) is its ubiquity

 If the number of code lines is less than 100, it is
better to choose BASH, otherwise Python

4Operating Systems

Introduction to scripts

 BASH vs. Python (and other)

 Performance

 To have high performance write a program not a
script

 The BASH interpreter is very fast to start (starting
phase)

 If you need to manipulate ASCII files, or heavily use
shell commands or filters like sort, uniq, etc., BASH
is more suitable and faster ("will smoke Python
performance wise")

 If you need to manipulate floating point numbers
Python is convenient ("will win hands down")

5Operating Systems

 Scripts

 Are normally stored in files with .sh extension (or
.bash)

 But recall that the extensions are not used
UNIX/Linux to determine the file type

 They can be executed using two techniques

 Direct execution

 Indirect execution

Introduction to shell scripts

6Operating Systems

 The script is executed from the command line as
a normal executable file

 The script file must have the execute permission
 chmod +x ./scriptname

 The first line of the script can specify the name of
the script interpreter

 #!/bin/bash or #!/bin/sh

 It is possible to execute the script using a specific
shell
 /bin/bash ./scriptname args

Direct execution

./scriptname args

7Operating Systems

Direct execution

 The script is executed by a sub-shell

 i.e., by a new shell process

 Environment (variables) of the original process and
of the new one are not the same

 Changes to the environment variables made by the
script, and used within the script, are lost at exit

./scriptname args

8Operating Systems

 The source command executes the script given
as its argument

 It is the current shell to run the script

 "The current shell sources the script"

 It is not necessary that the script is executable

 The changes made by the script to environment
variables remain in effect in the current shell

Indirect execution

source ./scriptname args

9Operating Systems

Example: direct and indirect execution

#!/bin/bash

NULL Script

exit 0

Indirect execution :
> source scriptName.sh<return>
The shell executes the script. Executing
exit the shell process terminates
(i.e., you kill the starting/original shell)

Direct execution:
> scriptName.sh<return>

The shell executes the script as a
sub-shell. Executing exit the sub-

shell terminates. The initial
process resumes control.

indicates a
comment

10Operating Systems

Script debugging

 There are not specific tools to debug bash scripts

 It is obviously always possible to add explicit
"echo"

 However, it is possible to "debug" a script in the
following way

 Full (the whole script)

 It is obtained by indicating a "debug" option at the
level of the entire script

 Partial (only a few lines of the script)

 It is obtained by indicating a "debug" option at the
level of some lines of the script using the set
command

11Operating Systems

Script debugging

 Possible options for both partial and full debug

 -o noexec, -n

 Executes a syntactic check, but the script is not
executed

 -o verbose, -v

 Displays the executed commands

 -o xtrace, -x

 Displays the execution trace of the entire script

 -o nounset, -u

 Prints a error for undefined variables

12Operating Systems

Script debugging

 Fully debug

 From a shell command

 /bin/bash -n ./scriptname args

 Inside the script

 #!/bin/bash -v

 #!/bin/bash -x

 ...

 Partial debug
 set -o verbose ... set +o verbose

 set -v ... set +v

 set -x ... set +x

13Operating Systems

 The bash language is relatively "high level", and
it allows to mix

 Standard shell commands
● ls, wc, find, grep, ...

 Standard constructs of the shell language

● Input and output variables and parameters,
operators (arithmetic, logic, etc.), control constructs
(conditional, iterative), arrays, functions, etc.

 Often instructions/commands are written in
separate lines

 on the same line, they must be separated by ';'

Syntax: general rules

14Operating Systems

Syntax: general rules

 Comments

 Character # indicates the presence of a comment

on the line

 A comment begins by character # and

terminates at the end of line

 exit allows terminating a script returning

an error code

 exit

 exit [0|1]

● In shell, 0 means TRUE

15Operating Systems

#!/bin/bash

This line is a comment

rm –rf ./../newDir/

mkdir ./../newDir/

cp * ../newDir/

ls ../newDir/ ;

0 is TRUE in shell programming

exit 0

Example of shell commands

Absolute path

';' superfluous

From the calling shell:
echo $?
returns 0

16Operating Systems

Arguments

 The arguments of the command line passed to the
script are identified by $

 Positional parameters

 $0 is the script name

 $1, $2, $3, ... indicate the arguments

passed to the script on the command line

 Special parameters

 $* Is the entire list (string) of arguments

(excluding the script name)

 $# Is the number of parameters (excluding the

script name)

 $$ Is the process PID

The shift command shifts
the parameters to the left
($0 remains unchanged)

17Operating Systems

#!/bin/bash

Using command line parameters

echo "Running process is $0"

echo "Parameters: $1 $2 $3 etc."

echo "Number of parameters $#"

echo "List of parameters $*"

shift

echo "Parameters: $1 $2 $3 etc."

shift

echo "Parameters: $1 $2 $3 etc."

exit 0

Argument passing example

$0, $1, etc. can also
be written outside

"..."

The "..." (double
quotes) expand the

variables

$0 remains
unchanged;

consequently $1=$2,
$2=$3, etc.

Again $0 remains
unchanged;

consequently $1=$2,
$2=$3, etc.

18Operating Systems

Variables

 Variables can be

 Local (shell variables)

 Available only in the current shell

 Global (environment variables)

 Available in all sub-shells

 Are exported by the current shell to all the process
executed by the shell

19Operating Systems

 Main features of shell variables

 Are not declared

 A variable is created by assigning a value to the
variable name

 Are case sensitive

 Var, VAR, and var are different variables

 Some names are reserved for special purposes

 The list of all defined variables and associated
value is displayed by command set

 The unset command clears the value of a
variable

 unset name

Variables

20Operating Systems

 Characterized by a name and associated content

 The content specifies the type

 Constant, string, integer, vector or matrix

 The contents associated to a name are strings
(even if a string can be interpreted as a numeric
value)

 Setting
 name="value"

 Usage

 $name

No blanks around '='

Double quotes are mandatory if
the string includes blank characters

Local (shell) variables

21Operating Systems

Examples

> var=Hello

> echo $var

Hello

> var=7+5

> echo $var

7+5

> i="Hello world!"

> echo $i

Hello world!

> i=$i" Bye!!!"

> echo $i

Hello world! Bye!!!

> i=Hello world

> world: command not found

Variables are strings !!

> let var=7+5

> echo $var

12

Assign an arithmetic
expression to a variable

(more details later)

Assignment is incorrect
(do to the blank)

Use quotes

Strings concatenation

22Operating Systems

Global (environment) variables

 The export command allows creating an

environment variable visible by other processes
 export name

 Notice that

 Some environment variable names are predefined
and reserved

 When a shell is executed these variables are
automatically initialized starting from
"environment" values

 These variable names are typically uppercase

 Can be displayed by means of the printenv (or
env) command

23Operating Systems

Example: local and global variable

> v=one

> echo $v

one

> bash

> ps -l

… Two bashes running

> echo $v

> exit

> echo $v

one

> v=one

> echo $v

one

> export v

> bash

> ps –l

… Two bashes running

> echo $v

one

> exit

> echo $v

one

Current shell local variable

Global variable because it
has been exported by the

sub-shell

This variable is
not set

24Operating Systems

#!/bin/bash

clear

echo "Hello, $USER!"

echo

echo "List logged users"

w #or who

echo "Set two local variables"

COLOR="black"; VALUE="9"

echo "String: $COLOR"

echo "Number: $VALUE"

echo

echo "Completed"

#exit

Example: variables

Clear video

w: shows the

logged users

Also without explicit exit

Set commands on
the same line

25Operating Systems

Variable Meaning

$? Stores the return value of the last process:
0 on success, other than 0 (between 1 and 255) on
error. Value 0 corresponds to the TRUE value (unlike
in C language)

$SHELL Current shell

$LOGNAME Username used for login

$HOME User home directory

$PATH List of the directories, delimited by ’:’ used for
searching the executable files and commands

$PS1
$PS2

Main prompt (usually ’$’ for users, ’#’ for root)
Auxiliary prompt (usually ’>’)

$IFS Lists the characters that delimits the "words" in an
input string (see read shell command)

Predefined variablesPartial list

26Operating Systems

Examples

$ PS1="> "

> echo $HOME

...

> v=$PS1

> echo $PS1

...

> PS1="myPrompt > "

myPrompt > echo $v

...

> myExe

myExe: command not found

> PATH=$PATH:.

> myExe

... myExe running ...

shell prompt modifications

> ls foo

ls: cannot access foo:

No such file or directory

> echo $?

2

> ls bar*

bar.txt

> echo $?

0

PATH modification,
adding current directory

Return value of a
command (0=TRUE)

27Operating Systems

Read from stdin

 The read function allows reading a line from

standard input

 Syntax

 read [options] var1 var2 ... varn

 read can be possibly followed by a list of variables

 The "words" of the read line will be assigned in turn
to each variable

 Possible excess words are all stored (as a string) in
the last variable

 If no variables are specified, the complete input
string is stored in variable REPLY

28Operating Systems

 Supported options
 -n nchars

● Returns after reading nchars characters without

waiting for newline

 -t timeout

● Timeout on reading

● Returns 1 if a string is not typed within timeout

seconds

 etc.

Read from stdin

29Operating Systems

Examples: read from stdin

> read v1 v2

input line string

> echo $v1

input

> echo $v2

line string

> read

> One two three

> echo $REPLY

One two three

> read

One two three

> v=$REPLY

> echo $v

One two three

> read v

input line string

> echo $v

input line string

Input string assigned to
variable v

Input string assigned to
the default variable

REPLY

2 variables, but input
string includes 3 words

30Operating Systems

Exercise

 Write a bash script that takes two integer
numbers and prints their sum and product

#!/bin/bash

Sum and product

echo –n "Reading n1: "

read n1

echo –n "Reading n2: "

read n2

let s=n1+n2

let p=n1*n2

echo "Sum: $s"

echo "Product: $p"

exit 0

from stdin

Arithmetic
expression

(more detail
later)

No blanks around
=, +, *

-n no

newline

31Operating Systems

Exercise

 Write a bash script that reads a username, and
displays her/his number of logins

 The list of logged users is produced by command
who or w

#!/bin/bash

Number of login(s) of a specific user

echo –n "User name: "

read user

who is logged | look for username | word count

times=$(who | grep $user | wc –l)

echo "User $user has $times login(s)"

exit 0

--lines = -l =

of lines

Use of shell
commands,

variables, etc.

32Operating Systems

Exercise

 Write a bash script that reads a string, and
displays its length

#!/bin/bash

String length

echo "Type a word: "

read word

echoing without newline | word count chars

l=$(echo –n $word | wc –c)

echo "Word $word is $l characters long"

exit 0

--chars = -c = # of chars
--bytes = -b = # of bytes

echo –n = no new line

33Operating Systems

Write to stdout

 Output on stdout can be performed using

 echo

 printf

 Function printf syntax is similar to C language

printf

 Uses escape characters

 It is not necessary to delimit fields by ","

34Operating Systems

 echo

 Displays its arguments, delimited by blank, and
terminated by newline

 Options

 -n eliminates the newline

 -e interprets escaped (\...) characters

● \b backspace

● \n newline

● \t tab

● \\ backslash

● etc.

Write to stdout

35Operating Systems

Examples: I/O

echo "Printing with a newline"

echo –n "Printing without newline"

echo –e "Deal with \n escape \t\t characters"

printf "Printing without newline"

printf "%s \t%s\n" "Hello. It's me:" "$HOME"

#!/bin/bash

Interactive input/output

echo –n "Insert a sentence: "

read w1 w2 others

echo "Word 1 is: $w1"

echo "Word 2 is: $w2"

echo "The rest of the line is: $others"

exit 0

Output: Hello. It's me: /home/scanzio

I & O together inside the same script

36Operating Systems

Arithmetic expressions

 Several notations can be used for defining
arithmetic expressions

 Command let "…"

 Double parentheses ((…))

 Square parentheses […]

 Syntactic statement expr

 Evaluates an expression by means of a new shell

 Less efficient

 Normally not used

Notice that an arithmetic expression is evaluated as TRUE
(exit status) IFF it is not 0

expression !=0  TRUE exit status=0  TRUE

37Operating Systems

Examples

> i=1

> let v1=i+1

> let "v2 = i + 1"

> let v3=$i+1

> echo $i $v1 $v2 $v3

1 2 2 2

> i=1

> ((v1=i+1))

> ((v2=$i+1))

> v3=$(($i+1))

> v4=$((i+1))

> echo $i $v1 $v2 $v3 $v4

1 2 2 2 2Use of let

> i=1

> v1=$[$i+1]

> v2=$[i+1]

> echo $i $v1 $v2

1 2 2

Use of ((e))

Use of [e]

If it is not between "..." the
expression cannot include

blanks

Alternative syntaxes for
arithmetic expressions

38Operating Systems

 The conditional statement if-then-fi

 Checks if the exit status of a sequence of
commands is equal to 0

 Recall: 0=TRUE in UNIX shell

 If so, it executes one or more commands

 The statement can also include an else condition
statement

 if-then-else-fi

 which allows also performing nested checks
 if-then-…-if-then-…-fi-fi

 if-then-elif-…-fi

Conditional statement: if-then-fi

39Operating Systems

Nested
if-then-else-fi

can be written as
if-then-elif-fi

Conditional statement: if-then-fi

Syntax 3

if condExpr

then

statements

else

statements

fi

Syntax 4

if condExpr

then

statements

elif condExpr

then

statements

else

statements

fi

Syntax 1

if condExpr

then

statements

fi

Syntax 2

if condExpr ; then

statements

fi

Statement on a
single line: ’;’
is mandatory

Standard
format With else

40Operating Systems

 condExpr

 Conditional expressions can use two syntactic
flavors

Conditional statement: if-then-fi

Syntax 1

test param op param

Syntax 2

[param op param]

Square parentheses must be
delimited by a blankDifferent operators for

• Numbers
• Strings
• Logical values
• Files and directories

41Operating Systems

Operators for numbers

-eq ==

-ne !=

-gt >

-ge >=

-lt <

-le <=

! ! (not)

Operators for strings

= strcmp

!= !strcmp

-n string non NULL string

-z string NULL (empty) string

Operators for files and directories

-d Argument is a directory

-f Argument is a regular file

-e Argument exists

-r Argument has read permission

-w Argument has write permission

-x Argument has execution permission

-s Argument has non-null dimension

Logical operators

! NOT

-a AND (inside [])

-o OR (inside [])

&& AND (in a sequence of commands)

|| OR (in a sequence of commands)

Conditional statement: if-then-fi

42Operating Systems

Examples

if [0] # false

if [1] # true

if [-1] # true

if [] # NULL is false

if [str] # a random string is true,

e.g., "abc" or abc is true

if [$v1 –eq $v2]

then

echo "v1==v2"

fi

Logical values

Test on numbers

if [$v1 -lt 10]

then

echo "$v1 < 10"

else

echo "$v1 >= 10"

fior
if test $v1 –eq $v2

43Operating Systems

Examples: file check

if ["$a" -eq 24 -a "$s" = "str"]; then

...

fi
AND of conditions

Equivalent format ([≡ test command)
if ["$a" -eq 24] && ["$s" = "str"]

if [["$a" -eq 24 && "$s" = "str"]]

if [$recursiveSearch -eq 1 -a -d $2]

then

find $2 -name *.c > $3

else

find $2 -maxdepth 1 *.c > $3

fi

44Operating Systems

if [$string = "abc"]; then

echo "string \"abc\" found"

fi

Examples: string check

Test on strings

If $string is null (e.g., return from input) the syntax is
incorrect because is evaluated as: [= "abc"]

Use double quotes for a error resistant syntax:
if ["$string" = "abc"]; then

which would be evaluated as: ["" = "abc"]

if [-f foo.c]; then

echo "foo.c is in this directory"

fi Test on file

45Operating Systems

#!/bin/sh

echo –n "Is it morning (yes/no)? "

read string

if ["$string" = "yes"]; then

echo "Good morning"

else

echo "Good afternoon"

fi

exit 0

Examples: whole script

Reading string from stdin
Check the string

Display of the output

46Operating Systems

Examples: whole script

#!/bin/sh

echo –n "Is it morning (yes/no)? "

read string

if ["$string" = "yes"]; then

echo "Good morning"

elif ["$string" = "no"]; then

echo "Good afternoon"

else

echo "Sorry, wrong answer"

fi

exit 0

Reading string from stdin
Check the string

Display of the output
Use of elif

47Operating Systems

 Statement for-in (for var in list)

 Executes the commands, for each value taken by
variable var

 The list of values can be given

 Explicitly (list)

 Implicitly (result of shell commands di shell, wild-
cards, etc.)

Syntax 1

for var in list

do

statements

done

Syntax 2

for var in list; do

statements

done

Iterative statement for-in

Remark: definite construct, i.e., iterates a
predefined number of times

48Operating Systems

for str in foo bar echo charlie tango

do

echo $str

done

Examples: for with list

for foo in 1 2 3 4 5 6 7 8 9 10

do

echo $foo

done

Displays a list of strings

Displays a list of
"numbers"

num="2 4 6 9 2.3 5.9"

for file in $num

do

echo $file

done

Displays a list of numbers
using a variable

(arrays, see later)

49Operating Systems

Examples: for and wild-chars

rm –f number.txt

for i in $(echo {1..50})

do

echo –n "$i " >> number.txt

done

Append the numbers from
1 to 50 to file

number.txt, in the same

line and separated by a space

’>’ would overwrite

number.txt at every

iteration

for f in $(ls | grep txt); do

chmod g+x $f

done

n=1

for i in $* ; do

echo "par #" $n = $i

let n=n+1

done

Displays all the parameters
received on the command line

Iterates on the parameter
of the scripts

Change privileges to
specific files

50Operating Systems

Examples: for and wild-chars

Changes the
privileges of files with
name including digit 7

for file in [ab]* ; do

rm -fr $file

echo "Removing file $file"

done

for f in $(ls | grep 7); do chmod g+x $f; done

Remove files with name
beginning by

a OR b

51Operating Systems

 Iterates while the condition is true

 the number of iterations is unknown

Syntax 1

while [cond]

do

statements

done

Syntax 2

while [cond] ; do

statements

done

Iterative statement while-do-done

52Operating Systems

#!/bin/bash

limit=10

var=0

while ["$var" -lt "$limit"]

do

echo "Here var is equal to $var"

let var=var+1

done

exit 0

Example

Displays 10 times a
message

53Operating Systems

#!/bin/bash

echo "Enter password: "

read myPass

while ["$myPass" != "secret"]; do

echo "Sorry. Try again."

read myPass

done

exit 0

Example

Displays a message
until the correct
string is given

54Operating Systems

#!/bin/bash

n=1

while read row

do

echo "Row $n: $row"

let n=n+1

done < in.txt > out.txt

exit 0

Example of read with stdin redirection

Since the while-do-done statement is considered to be unique,
the redirection (of I/O) must be done at the end of the statement

Constant filenames.
Possibility to use parameters or

variables: ... <$1 > $var

Reads complete
lines from stdin Writing

echo ... > out.txt
implies to rewrite file out.txt
at any iteration. You can use:

echo ... >> out.txt

Writing
while read row < in.txt
will always re-read the first

line of the file

55Operating Systems

Exercise

 Write a bash script that

 Takes two integers n1 and n2 from command line,
otherwise reads them from stdin (if not present)

 Display a matrix of n1 rows and n2 columns of
increasing integer values starting from 0

 Example

> ./myScript 3 4

0 1 2 3

4 5 6 7

8 9 10 11

56Operating Systems

#!/bin/bash

if [$# -lt 2] ; then

echo -n "Values: "

read n1 n2

else

n1=$1

n2=$2

fi

Solution

n=0

r=0

while [$r -lt $n1] ; do

c=0

while [$c -lt $n2] ; do

echo -n "$n "

let n=n+1

let c=c+1

done

let r=r+1

echo

done

exit 0

Reads input
data

Double loop
for displaying

the values

57Operating Systems

 break and continue statements have the

same meaning in shell and in C language

 break: unstructured exit from the cycle

 continue: skip to the next iteration of the cycle

 Character ’:’ can be used

 For creating "null instructions"
 if [-d "$file"]; then

 : # Empty instruction

 fi

 For indicating a TRUE condition
 while :

 equivalent to while [0]

Break, continue and ':'

58Operating Systems

Arrays

 bash define also one-dimensional arrays

 Any variable can be defined as an array

 Explicit declaration is not required (but possible with
the declare construct)

 No restriction

 On the dimension of the array

 On the use of contiguous indices

 Indices usually start from 0

 Zero-base indexing, as in C language

Arrays in shell are not
associative (no hashing)

59Operating Systems

Arrays

 Suppose name is the name of a vector

 Definition

 Element-wise
● name[index]="value"

 By means of a list of values

● name = (list of values separated by blanks)

 Reference

 A single element
● ${name[index]}

 All elements
● ${name[*]} The use of {} is

mandatory

* or @

A new element can be
created at any time

60Operating Systems

Arrays

 Number of elements
 ${#name[*]}

 Length of the i-th element (number of characters)
 ${#name[i]}

 Statement unset eliminates

 an element
 unset name[index]

 an array
 unset name

61Operating Systems

Examples: arrays

> vet=(1 2 5 hello)

> echo ${vet[0]}

1

> echo ${vet[*]}

1 2 5 hello

> echo ${vet[1-2]}

2 5

> vet[4]=bye

> echo ${vet[*]}

1 2 5 hello bye

> unset vet[0]

> echo ${vet[*]}

2 5 hello bye

> unset vet

> echo ${vet[*]}

> vet[5]=100

> vet[10]=50

> echo ${var[*]}

100 50

Non contiguous
indexes

Initialized by a list
Elimination

62Operating Systems

Exercise

 Write a bash script that

 Reads a sequence of numbers, one per line,
ending by 0

 Displays the values read in inverse order

 Example
Input n1: 14

...

Input n10: 123

Input n11: 0

Output: 123 ... 14

63Operating Systems

Solution

#!/bin/bash

i=0

while [0]; do

echo -n "Input $i: "

read v

if ["$v" -eq "0"] ; then

break;

fi

vet[$i]=$v

let i=i+1

done

echo

let i=i-1

while ["$i" -ge "0"]

do

echo "Output $i: ${vet[$i]}"

let i=i-1

done

exit 0

Output
in inverse order

or :
Input

echo $ {vet [*]}
would display the

elements in the same
order and separated

by a space

