Synchronization

Critical sections
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it



https://www.skenz.it/os

Operating Systems 7 2

Concurrency and Synchronization

Processes or threads }

» Development environment
» concurrent programming (using P or T)
» cooperating processes or threads

<% Issues ( Results
> Need to manipulate shared data ey
> Race conditions may arise  Of execution
» There may be sections of not-reentrant code

%+ Solution strategy Uninterruptible code |

> appropriately synchronize P or T, to make their
results not dependent on their relative speed



Time

10.00
10.05
10.10
10.15
10.20
10.25
10.30
10.35

Operating Systems

oy f et

Person A
Look in fridge; out of milk
Leave for store
Get to the store
Buy milk
Back home
Put milk in fridge

"Too much milk problem

Person B

Look in fridge; out of milk
Leave for store

Get to the store

Buy milk

Back home

Put milk in fridge
Hops!!!



Operating Systems 4

e h 4 N\
void push (int val) ({ int pop (int *val) ({
if (top>=SIZE) if (top<=0)
return; return;
stack[top] = val; top--;
top++; *val=stack|[top];
return; return;
} }
- NS )

< push and pop
» Operate on the same end of the stack
» Variable top is shared

Can overwrite a value (lose a
push), make a pop of a
nonexistent value, etc.

top++ then top-- or viceversa
Problems?!




Operating Systems 5

FIFO — Queue — Circular Buffer

g N C N
void enqueue (int wval) ({ int dequeue (int *val) ({
if (n>SIZE) return; if (n<=0) return;
queue[tail] = val; *val=queue [head] ;
tail=(tail+l) $SIZE; head= (head+1) $SIZE;
n++; n--;
return; ~ return;
} register = n } register = n
\_ register = register + 1 |\ _ register = register - 1
Ln = register ) Ln = register

% enqueue and dequeue

» Operate on the different ends of the queue, using
two variables tail and head

> Variable n is still shared

Increments and decrements
can be lost




Operating Systems 1= 6

Critical sections

* Critical Section (CS) or Critical Region (CR)
> A section of code, common to multiple processes

(or threads), in which they can access (read and
write) shared objects

“ie,aCSorCRis

> A section of code in which multiple processes (or
threads) are competing for the use (read and
write) of shared resources (e.g., data or devices)



Operating Systems S B & 4

Critical sections

% The race conditions could be prevented if

» No P (or T) executes in the same CS
simultaneously

» No other P (or T) can execute, when a P (or T)
executes in the CS

» The code in the CS is executed by a single P (or T)
at a time

> The code in the CS is executed in mutual exclusion

In other words, Bernstein's
conditions must fulfill




Operating Systems —-— i“h 5 8

%+ Solution
> Establish an access protocol that enforces
mutual exclusion for each CS
@ l.e.
» Entering a CS, a thread executes a "reservation”
code
= The reservation code must block (lock out) the P (or
T) if another P (or T) is using its CS
> Leaving its CS, a P (or T) executes a code to
release the CS

= The release possibly unlocks another P (or T) which
was waiting in the “reservation” code of its CS



Operating Systems

9

Access protocol

. h 48 N
while (TRUE) ({ while (TRUE) {
reservation code reservation code
Critical Section Critical Section
release code release code
non critical section non critical section
} }
N VRN Y

% Every CS is protected by an
> enter code (reservation, or prologue)
> exit code (release, or epilogue)

+» Non-critical sections should not be protected



Operating Systems S B & 10

Conditions

%+ Each solution to the CS problem must match the
following requirements

» Mutual exclusion

= Only one P (or T) at a time must gain access to the
CS

» Progress
= IfnoP (orT)isinthe CS, and a P (or T) wants to
enter, it must be able to do it in a defined time

e Only the P (or T) in the reservation phase can
participate to the selection

e No P (or T) outside the CS can block other P (or T)
= That is, deadlock between P (or T) must be avoided



Operating Systems . 11~= 11

Conditions

» Defined wait

= There must be a maximum number of times in which
other P (or T) can access the CS, before a specific P
(or T) can access

= That is, we must avoid starvation of P (or T)

» Each solution should be symmetrical
= The selection of the P (or T) that must access the CS
should not depend on
e Relative priority between P (or T)
e Relative speed between P (or T)



Operating Systems 1= j 74

¢+ Software functions

> Solutions without special CPU instructions, which
depend on the logic of an algorithm

«» Hardware

» Solutions based on special hardware
characteristics, or special (atomic) CPU
instructions

% System calls

» The kernel provides the data structures, and the
related system calls, that the programmer can
properly use for solving the mutual exclusion
problem

p
Semaphore: introduced by
L Dijkstra [1965]




