
Synchronization

Critical sections
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Concurrency and Synchronization

 Development environment

 concurrent programming (using P or T)

 cooperating processes or threads

 Issues

 Need to manipulate shared data

 Race conditions may arise

 There may be sections of not-reentrant code

 Solution strategy

 appropriately synchronize P or T, to make their
results not dependent on their relative speed

Uninterruptible code

Results
dependent

on the order
of execution

Processes or threads

3Operating Systems

"Too much milk problem"

Time Person A Person B

10.00 Look in fridge; out of milk

10.05 Leave for store

10.10 Get to the store Look in fridge; out of milk

10.15 Buy milk Leave for store

10.20 Back home Get to the store

10.25 Put milk in fridge Buy milk

10.30 Back home

10.35 Put milk in fridge
Hops!!!

4Operating Systems

int pop (int *val) {

if(top<=0)

return;

top--;

*val=stack[top];

return;

}

LIFO - Stack

void push (int val) {

if(top>=SIZE)

return;

stack[top] = val;

top++;

return;

}

Pi / Ti Pj / Tj

 push and pop

 Operate on the same end of the stack

 Variable top is shared

Can overwrite a value (lose a
push), make a pop of a
nonexistent value, etc.

top++ then top-- or viceversa
Problems?!

5Operating Systems

int dequeue (int *val) {

if (n<=0) return;

*val=queue[head];

head=(head+1)%SIZE;

n--;

return;

}

FIFO – Queue – Circular Buffer

void enqueue (int val) {

if (n>SIZE) return;

queue[tail] = val;

tail=(tail+1)%SIZE;

n++;

return;

}

 enqueue and dequeue

 Operate on the different ends of the queue, using
two variables tail and head

 Variable n is still shared

register = n
register = register + 1
n = register

Pi / Ti Pj / Tj

Increments and decrements
can be lost

register = n
register = register - 1
n = register

6Operating Systems

Critical sections

 Critical Section (CS) or Critical Region (CR)

 A section of code, common to multiple processes
(or threads), in which they can access (read and
write) shared objects

 i.e, a CS or CR is

 A section of code in which multiple processes (or
threads) are competing for the use (read and
write) of shared resources (e.g., data or devices)

7Operating Systems

Critical sections

 The race conditions could be prevented if

 No P (or T) executes in the same CS
simultaneously

 No other P (or T) can execute, when a P (or T)
executes in the CS

 The code in the CS is executed by a single P (or T)
at a time

 The code in the CS is executed in mutual exclusion

8Operating Systems

Solution

 Solution

 Establish an access protocol that enforces
mutual exclusion for each CS

 i.e.

 Entering a CS, a thread executes a ”reservation”
code

 The reservation code must block (lock out) the P (or
T) if another P (or T) is using its CS

 Leaving its CS, a P (or T) executes a code to
release the CS

 The release possibly unlocks another P (or T) which
was waiting in the ”reservation” code of its CS

9Operating Systems

while (TRUE) {

...

reservation code

Critical Section

release code

...

non critical section

}

while (TRUE) {

...

reservation code

Critical Section

release code

...

non critical section

}

 Every CS is protected by an

 enter code (reservation, or prologue)

 exit code (release, or epilogue)

 Non-critical sections should not be protected

Pi / Ti Pj / Tj

Access protocol

10Operating Systems

Conditions

 Each solution to the CS problem must match the
following requirements

 Mutual exclusion

 Only one P (or T) at a time must gain access to the
CS

 Progress

 If no P (or T) is in the CS, and a P (or T) wants to
enter, it must be able to do it in a defined time

● Only the P (or T) in the reservation phase can
participate to the selection

● No P (or T) outside the CS can block other P (or T)

 That is, deadlock between P (or T) must be avoided

11Operating Systems

Conditions

 Defined wait

 There must be a maximum number of times in which
other P (or T) can access the CS, before a specific P
(or T) can access

 That is, we must avoid starvation of P (or T)

 Each solution should be symmetrical

 The selection of the P (or T) that must access the CS
should not depend on

● Relative priority between P (or T)

● Relative speed between P (or T)

12Operating Systems

Solutions

 Software functions

 Solutions without special CPU instructions, which
depend on the logic of an algorithm

 Hardware

 Solutions based on special hardware
characteristics, or special (atomic) CPU
instructions

 System calls

 The kernel provides the data structures, and the
related system calls, that the programmer can
properly use for solving the mutual exclusion
problem Semaphore: introduced by

Dijkstra [1965]

