
Critical Sections – Mutual exclusion

Software solutions
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Software solution: no special instructions

 The software solutions to the CS problem are
based on the use of shared (global) variables

 Available on systems with shared memory

 We will analyze the solution with only two P (or T)

 They are named threads Pi (Ti) and Pj (Tj)

 Give i then j=i-1, and vice versa

 The proposed solution is not easily extended to
more than two threads

In addition, we suppose the
existence of two logical values

TRUE (1) and FALSE (0)

3Operating Systems

Mutual exclusion: Solution 1

while (TRUE) {

while (flag[i]);

flag[j] = TRUE;

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

while (flag[j]);

flag[i] = TRUE;

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti Pj / Tj

 Shared variables

 int flag[2] = {FALSE, FALSE};

Mutual exclusion
Deadlock
Starvation
Symmetry

?

4Operating Systems

Mutual exclusion: Solution 1

 Mutual exclusion not granted

 Ti and Tj can access to their CS at the same time

 Shared variables

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

while (flag[i]);

flag[j] = TRUE;

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

while (flag[j]);

flag[i] = TRUE;

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti Pj / Tj

5Operating Systems

Mutual exclusion: Solution 1

 Solution 1

 A shared vector of flags "busy CS"

 A thread tests the other thread "busy CS" flag and
sets its own

 It does not guarantee mutual exclusion in CS

 The technique fails because

 The lock variable is controlled and changed by two
separate statements

 A context switching may occur between the two
statements (they are not executed as single,
atomic instruction)

6Operating Systems

Mutual exclusion: Solution 1

 The flag "Busy CS" variable is usually named
lock variable

 It serves to protect the CS

 Even if the solution were correct, the cycles
testing the flag is a busy form of waiting

 Waste of CPU time

 Acceptable only if the busy wait is very short

 This lock mechanism, which uses the busy form
of waiting, is called spin lock

7Operating Systems

Mutual exclusion: Solution 2

 Shared variables

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[j] = TRUE;

while (flag[i]);

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

flag[i] = TRUE;

while (flag[j]);

CS

flag[i] = FALSE;

non critical section

}

Pj / TjPi / Ti

?

Exchanges test and
set statements

Mutual exclusion
Deadlock
Starvation
Symmetry

?

8Operating Systems

Mutual exclusion: Solution 2

 Possible deadlock (or better livelock)

 Both threads can set their flag to TRUE, and wait
forever

 Shared variables

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[j] = TRUE;

while (flag[i]);

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

flag[i] = TRUE;

while (flag[j]);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti Pj / Tj

9Operating Systems

Mutual exclusion: Solution 2

 Solution 2 tries to solve the problem of solution 1
with a symmetric approach

 Reserves the access to the CS before testing its
availability (i.e., performs setting before testing)

 But deadlock (livelock) is possible

 Again, busy form of waiting with spin lock

10Operating Systems

while (TRUE) {

while (turn!=i);

CS

turn = j;

non critical section

}

Mutual exclusion: Solution 3

while (TRUE) {

while (turn!=j);

CS

turn = i;

non critical section

}

Pi / Ti Pj / Tj

Or
int turn = j;

 Shared variables

 int turn = i;

Mutual exclusion
Deadlock
Starvation
Symmetry

?

11Operating Systems

Mutual exclusion: Solution 3

 Undefined wait

 Ti and Tj access their CS only alternatively

 If Ti (Tj) has not interest in using its CS, Pj (Pi) cannot
enter its CS (starvation)

while (TRUE) {

while (turn!=j);

CS

turn = i;

non critical section

}

while (TRUE) {

while (turn!=i);

CS

turn = j;

non critical section

}

Pi / Ti Pj / Tj

Or
int turn = j;

 Shared variables

 int turn = i;

12Operating Systems

Mutual exclusion: Solution 3

 Solution 3 uses

 A binary variable "turn", which indicates that the
thread is enabled to enter its CS

 Mutual Exclusion is ensured by the assignment of
the access turn

 The solution involves alternation and possible
starvation

 Busy form of waiting with spin lock (as solutions 1
and 2)

13Operating Systems

Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[j] = TRUE;

turn = i;

while (flag[i] &&

turn==i);

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] &&

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pj / TjPi / Ti

Or
int turn = j;

Mutual exclusion
Deadlock
Starvation
Symmetry

?

14Operating Systems

Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] &&

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti In CS iff
flag[j]==FALSE OR turn==i

Mutual
exclusion?

Ti and Tj both in their CSs?
No, because turn==i or turn==j,

not both

If Tj is in its CS, Ti can enter its CS?
If Tj is inside its CS, flag[j]==TRUE (set by Tj)

AND turn==j (set by Ti) ,
thus Ti will wait

Or
int turn = j;

15Operating Systems

Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] &&

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti

Deadlock?

Ti/Tj wait only on this while
loop

If Ti is waiting and Tj is not
interested in its CS,

flag[j]==FALSE,
thus Ti can access its CS

If Ti is waiting and Tj releases
its CS, Tj sets flag[j]=FALSE,

thus Ti can access its CS

Ti and Tj cannot be both
waiting, because variable turn

stores a
single value at a time

Or
int turn = j;

16Operating Systems

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] &&

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

Pi / Ti

Starvation?

Tj is in its CS, and is very fast at
reserving again access to its CS.

Can Ti wait forever (starve)?

Tj sets flag[j] to FALSE but immediately
after to TRUE. However, it sets turn=i,

enabling access for Ti

thus Tj will waits

Or
int turn = j;

17Operating Systems

Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] &&

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti

Symmetric?

Symmetrically identical codes

Or
int turn = j;

while (TRUE) {

flag[j] = TRUE;

turn = i;

while (flag[i] &&

turn==i);

CS

flag[j] = FALSE;

non critical section

}

Pj / Tj

18Operating Systems

Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

 Correct solution:

 All the conditions related to the CS are met

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] &&

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti

Symmetric?

Or
int turn = j;

while (TRUE) {

flag[j] = TRUE;

turn = i;

while (flag[i] &&

turn==i);

CS

flag[j] = FALSE;

non critical section

}

Pj / Tj

19Operating Systems

Mutual exclusion: Solution 4

 The first software solution that allows two or more
processes to share a single-use resource without
conflict, using only shared memory and normal
instructions, has been proposed by G. L. Peterson
[1981]

 It guarantees

 Mutual exclusion

 Progress (no deadlock)

 Defined wait (no starvation)

 Symmetry

 The wait of P (or T) is a busy waiting on a spin lock

 The problem of the consumption of "CPU time" remains

20Operating Systems

Conclusions

 In general, the software solutions to the problem
of CS are complex and inefficient

 Setting and testing a variable by a P/T is an
operation that is "invisible" to the other P/T

 Test and set operations are not atomic, thus
a P/T can react to the presumed value of a
variable rather than to its current value

 The solutions for a number n of P/T are even more
complex

 McGuire [1972]

 Lamport [1974]

