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Software solution: no special instructions

 The software solutions to the CS problem are 
based on the use of shared (global) variables

 Available on systems with shared memory

 We will analyze the solution with only two P (or T)

 They are named threads Pi (Ti) and Pj (Tj)

 Give i then j=i-1, and vice versa

 The proposed solution is not easily extended to 
more than two threads

In addition, we suppose the 
existence of two logical values 

TRUE (1) and FALSE (0) 
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Mutual exclusion: Solution 1

while (TRUE) {

while (flag[i]);

flag[j] = TRUE;

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

while (flag[j]);

flag[i] = TRUE;

CS

flag[i] = FALSE;

non critical section 

}

Pi / Ti Pj / Tj

 Shared variables

 int flag[2] = {FALSE, FALSE};

Mutual exclusion
Deadlock
Starvation
Symmetry

?
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Mutual exclusion: Solution 1

 Mutual exclusion not granted

 Ti and Tj can access to their CS at the same time

 Shared variables

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

while (flag[i]);

flag[j] = TRUE;

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

while (flag[j]);

flag[i] = TRUE;

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti Pj / Tj
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Mutual exclusion: Solution 1

 Solution 1

 A shared vector of flags "busy CS"

 A thread tests the other thread "busy CS" flag and 
sets its own

 It does not guarantee mutual exclusion in CS

 The technique fails because

 The lock variable is controlled and changed by two 
separate statements 

 A context switching may occur between the two 
statements (they are not executed as single, 
atomic instruction)
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Mutual exclusion: Solution 1

 The flag "Busy CS" variable is usually named 
lock variable

 It serves to protect the CS

 Even if the solution were correct, the cycles 
testing the flag is a busy form of waiting

 Waste of CPU time

 Acceptable only if the busy wait is very short

 This lock mechanism, which uses the busy form 
of waiting, is called spin lock
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Mutual exclusion: Solution 2

 Shared variables

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[j] = TRUE; 

while (flag[i]);

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

flag[i] = TRUE;

while (flag[j]);

CS

flag[i] = FALSE;

non critical section

}

Pj / TjPi / Ti

?

Exchanges test and 
set statements

Mutual exclusion
Deadlock
Starvation
Symmetry

?
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Mutual exclusion: Solution 2

 Possible deadlock (or better livelock)

 Both threads can set their flag to TRUE, and wait 
forever

 Shared variables

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[j] = TRUE; 

while (flag[i]);

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

flag[i] = TRUE;

while (flag[j]);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti Pj / Tj
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Mutual exclusion: Solution 2

 Solution 2 tries to solve the problem of solution 1 
with a symmetric approach

 Reserves the access to the CS before testing its 
availability (i.e., performs setting before testing)

 But deadlock (livelock) is possible

 Again, busy form of waiting with spin lock
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while (TRUE) {

while (turn!=i);

CS

turn = j;

non critical section

}

Mutual exclusion: Solution 3

while (TRUE) {

while (turn!=j);

CS

turn = i;

non critical section

}

Pi / Ti Pj / Tj

Or
int turn = j;

 Shared variables

 int turn = i; 

Mutual exclusion
Deadlock
Starvation
Symmetry

?
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Mutual exclusion: Solution 3

 Undefined wait

 Ti and Tj access their CS only alternatively

 If Ti (Tj) has not interest in using its CS, Pj (Pi) cannot 
enter its CS (starvation)

while (TRUE) {

while (turn!=j);

CS

turn = i;

non critical section

}

while (TRUE) {

while (turn!=i);

CS

turn = j;

non critical section

}

Pi / Ti Pj / Tj

Or
int turn = j;

 Shared variables

 int turn = i; 
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Mutual exclusion: Solution 3

 Solution 3 uses

 A binary variable "turn", which indicates that the 
thread is enabled to enter its CS

 Mutual Exclusion is ensured by the assignment of 
the access turn

 The solution involves alternation and possible 
starvation

 Busy form of waiting with spin lock (as solutions 1 
and 2)
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Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[j] = TRUE;

turn = i; 

while (flag[i] &&

turn==i);

CS

flag[j] = FALSE;

non critical section

}

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] && 

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pj / TjPi / Ti

Or
int turn = j;

Mutual exclusion
Deadlock
Starvation
Symmetry

?
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Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] && 

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti In CS iff
flag[j]==FALSE OR turn==i

Mutual 
exclusion?

Ti and Tj both in their CSs?
No, because turn==i or turn==j, 

not both

If Tj is in its CS, Ti can enter its CS?
If Tj is inside its CS, flag[j]==TRUE (set by Tj)  

AND turn==j (set by Ti) ,
thus Ti will wait

Or
int turn = j;
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Mutual exclusion: Solution 4

 Shared variables

 int turn = i; 

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] && 

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti

Deadlock?

Ti/Tj wait only on this while 
loop

If Ti is waiting and Tj is not 
interested in its CS, 

flag[j]==FALSE,
thus Ti can access its CS

If Ti is waiting and Tj releases 
its CS, Tj sets flag[j]=FALSE, 

thus Ti can access its CS

Ti and Tj cannot be both 
waiting, because variable turn

stores a 
single value at a time

Or
int turn = j;



16Operating Systems

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] && 

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

Pi / Ti

Starvation?

Tj is in its CS, and is very fast at 
reserving again access to its CS.

Can Ti wait forever (starve)?

Tj sets flag[j] to FALSE but immediately 
after to TRUE. However, it sets turn=i, 

enabling access for Ti

thus Tj will waits

Or
int turn = j;
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Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] && 

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti

Symmetric?

Symmetrically identical codes

Or
int turn = j;

while (TRUE) {

flag[j] = TRUE;

turn = i; 

while (flag[i] &&

turn==i);

CS

flag[j] = FALSE;

non critical section

}

Pj / Tj
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Mutual exclusion: Solution 4

 Shared variables

 int turn = i;

 int flag[2] = {FALSE, FALSE};

 Correct solution:

 All the conditions related to the CS are met

while (TRUE) {

flag[i] = TRUE;

turn = j;

while (flag[j] && 

turn==j);

CS

flag[i] = FALSE;

non critical section

}

Pi / Ti

Symmetric?

Or
int turn = j;

while (TRUE) {

flag[j] = TRUE;

turn = i; 

while (flag[i] &&

turn==i);

CS

flag[j] = FALSE;

non critical section

}

Pj / Tj
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Mutual exclusion: Solution 4

 The first software solution that allows two or more 
processes to share a single-use resource without 
conflict, using only shared memory and normal 
instructions, has been proposed by G. L. Peterson 
[1981]

 It guarantees

 Mutual exclusion

 Progress (no deadlock)

 Defined wait (no starvation)

 Symmetry

 The wait of P (or T) is a busy waiting on a spin lock

 The problem of the consumption of "CPU time" remains
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Conclusions

 In general, the software solutions to the problem 
of CS are complex and inefficient

 Setting and testing a variable by a P/T is an 
operation that is "invisible" to the other P/T

 Test and set operations are not atomic, thus 
a P/T can react to the presumed value of a 
variable rather than to its current value

 The solutions for a number n of P/T are even more 
complex

 McGuire [1972]

 Lamport [1974]


