
Synchronization

Hardware solutions
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Hardware solutions

 Hardware solutions to the CS problem can be
classified as follows:

 Solutions for systems that do not allow
preemption

 Solutions for systems that allow preemption

 Solutions based on interrupts management

 Solutions based on an "extension" of software
solutions, or based on

● Some kind of lock

● Some kind of atomic instruction

This aspect is complicated by
the presence of multiprocessor

or multi-core systems

3Operating Systems

Systems without preemption

 In a system without preemption

 The P (or T) in execution in the CPU cannot be
interrupted

 The control is released from the P (or T) to the
kernel only in a voluntary way

The CPU cannot be
subtracted (preempted)
from a P (or T), which is

in the running state

4Operating Systems

Systems without preemption

 In mono-processor systems without
preemption

 The CS problem does not exist, because only a P
(or T) can use the only CPU at a certain time, and
this P (or T) cannot be interrupted

 However, this situation rarely occurs because

 Systems are often multi-processor or multicore,
and even without preemption the parallelism is
effective: i.e., distinct processors or cores can
concurrently execute more than one P (or T)

 Kernels without preemption are not secure,
have excessive response times, and are not
suitable for "real-time"

5Operating Systems

Systems with preemption

 In a system with preemption

 A running process can be interrupted

 As a matter of fact, the operating system or the
arrive of an interrupt changes/preempts the
control flow to another process

 The original process will be terminated later

The CPU can be
subtracted from a
running P (or T)

6Operating Systems

Using the interrupt mechanism

 In mono-processor system with preemption

 It is possible to solve CS problem with interrupts

 Disable interrupts in the reservation section

 Enable interrupts in the release section

● Used only inside the kernel, and for short sections

● In multi-processor (multi-core) the interrupts must be
disabled on all processors

while (TRUE) {

disable interrupt

CS

enable interrupt

non critical section

}

Enabling and disabling
interrupts are privileged

instructions

7Operating Systems

Using the interrupt mechanism

 In general, disabling interrupts has several
disadvantages

 The procedure is inherently insecure

 What happens if to a user process is given the right
to disable interrupts, and that process has an
incorrect behavior?

 This opportunity can be provided only to kernel level
processes (super-user)

 In multi-processor (multi-core) systems it is
necessary to disable the interrupt on all processors

 The interrupt disabling request must be sent

 Long processing times are needed

 System management becomes non real-time

8Operating Systems

 An alternative strategy is to simplify the software
solutions, using locking mechanisms supported
by the hardware.

 A lock can be uses to protect a CS

 The lock value allows or prohibits access to the CS

 It must be an indivisible instruction executed
in a single "memory cycle", which

 Cannot be interrupted

 Allows testing and simultaneous setting of a
shared variable

Using lock-unlock mechanisms

9Operating Systems

 Two main atomic lock instructions exist

 Test-And-Set

 Sets to one and returns the previous value of a
shared lock variable

 Executed in a single indivisible cycle

 Swap

 Swaps the content of two variables, one of which is
a shared lock

 Executed in a single indivisible cycle

Using lock-unlock mechanisms

10Operating Systems

Test-And-Set

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE;

return val;

}

Sets the lock to TRUE,
i.e., locks the CS

Receives, the pointer to the shared lock.
The lock is of type char or int (but just one
bit / byte is enough) is initialized to FALSE

Returns the previous value
of the lock

11Operating Systems

while (TRUE) {

while (TestAndSet (&lock)); // lock

CS

lock = FALSE; // unlock

Non critical section

}

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE; // Set new lock

return val; // Return old lock

}

Using Test-And-Set instruction

If lock==FALSE
Set lock=TRUE and enter CS

If lock==TRUE
the CS is busy,

thus waits
Reservation code:

Test and Set

char lock = FALSE; Shared lock variable

12Operating Systems

Test-And-Set instruction: disadvantages

while (TRUE) {

while (TestAndSet (&lock)); // lock

CS

lock = FALSE; // unlock

sezione non critica

}

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE; // Set new lock

return val; // Return old lock

}

char lock = FALSE;

Busy form of waiting over a
spin-lock: consumes CPU

cycles while it waits

TestAndSet must be atomic

13Operating Systems

Swap

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

Performs the atomic exchange

Receives the pointer to the shared
lock and to a local lock variable.

The shared lock initialized to FALSE

14Operating Systems

Using swap

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

while (TRUE) {

key = TRUE;

while (key==TRUE)

swap (&lock, &key); // Lock

CS

lock = FALSE; // Unlock

non critical section

}

Setting key=TRUE
reserve the CS

If lock==FALSE
the CS is free, set

key=FALSE,
lock=TRUE, and

enter the CS

If
lock==TRUE

wait

char lock = FALSE;

Shared lock variable

swap is atomic

15Operating Systems

Swap: disadvantages

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

while (TRUE) {

key = TRUE;

while (key==TRUE)

swap (&lock, &key); // Lock

CS

lock = FALSE; // Unlock

non critical section

}

char lock = FALSE;

Busy form of waiting
over a spin-lock:

consumes CPU cycles
while it waits

The swap
procedure must be

atomic

16Operating Systems

 The previous techniques

 Ensure mutual exclusion

 Ensure progress, avoiding the deadlock

 They do not ensure the definite waiting for a
process, or they do not guarantee non-starvation

 Are symmetric

 To avoid starvation

 Previous solution must be extended

 The following solution is derived from TestAndSet

 It is due to Burns [1978]

Mutual exclusion without starvation

Slow T/P never enter
the CS because the

fast ones keep it busy

17Operating Systems

while (TRUE) {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && TestAndSet (&lock));

waiting[i] = FALSE;

CS

j = (i+1) % N;

while ((j!=i) and (waiting[j]==FALSE))

j = (j+1) % N;

if (j==i)

lock = FALSE;

else

waiting[j] = FALSE;

non critical section

}

Mutual exclusion without starvation

Ti

Single shared lock
initialized to FALSE

A reservation vector, with an
element per T/P, initialized to

FALSE

The T/P in the queue enter
the SC because they receive

the entering opportunity
from the previous one

18Operating Systems

while (TRUE) {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && TestAndSet (&lock));

waiting[i] = FALSE;

CS

j = (i+1) % N;

while ((j!=i) and (waiting[j]==FALSE))

j = (j+1) % N;

if (j==i)

lock = FALSE;

else

waiting[j] = FALSE;

non critical section

}

Mutual exclusion without starvation

Ti
Enter the CS if it is free

lock=FALSE  return TRUE

or waiting[i] has been set to
FALSE by another T/P

Otherwise yield the lock to a
waiting T/P by setting

waiting[j]=FALSE

Releasing the SC set lock= FALSE
if no T/P is waiting

19Operating Systems

Conclusions

 Advantages of hardware solutions

 Can be used in multi-processor environments

 Easily extensible to N threads

 Easy to use from the software/user point of view

 Symmetric

20Operating Systems

Conclusions

 Disadvantages of hardware solutions

 Not easy to implement at the hardware level

 Need atomic operations on global variables

 Possible starvation

 The selection of processes for entering the CS using
busy-waiting is arbitrary, and managed by the
processes and not by the SO

 Busy waiting on spin-lock

 Waste of resources (i.e., CPU cycles) for waiting

● In practice, busy-waiting is used only for very short
waiting

21Operating Systems

Conclusions

 Priority inversion: a higher priority task is preempted
by a lower priority task.

 Consider two threads H and L, of high and low priority,
respectively, accessing a resource in mutual exclusion.

 L is in its CS, H is blocked outside until L exits its CS.

 If a third thread M of medium priority becomes ready, it
preempts L, thus L does not leave its CS promptly,
causing H, the highest priority process, to remain
blocked.

 A possible solution to this problem is to use the
priority inheritance protocol

 A process holding a lock automatically inherits the
priority of the process with the higher priority waiting
for the same lock

