
Synchronization

Classical Synchronization Problems
Stefano Quer and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Producer-Consumer

 Producer and consumer with limited memory

 It uses a circular buffer of dimension SIZE to store
the elements to be produced and consumed

 The circular buffer implements a FIFO queue
(First-In First-Out)

b

P

C

B

P

C

a

B

c

P

C

B

head
(out)

tail
(in)

full FIFO,
empty,

partially full

3Operating Systems

Sequential access

#define SIZE ...

...

int queue[SIZE];

int tail, head;

...

void init () {

tail = 0;

head = 0;

n = 0;

}

void dequeue (int *val) {

if (n<=0) return;

*val=queue[head];

head=(head+1)%SIZE;

n--;

return;

}

void enqueue (int val) {

if (n>SIZE) return;

queue[tail] = val;

tail=(tail+1)%SIZE;

n++;

return;

}

FIFO standard (non ADT)

4Operating Systems

Sequential vs parallel access

 In the sequential access enqueue and dequeue
are concurrent

 In parallel access we can have two cases

 Only 1 producer and only 1 consumer

 The operations enqueue and dequeue act on
different extremes of the queue, however the n
variable is shared

 P producers and C consumers

 In addition to the previous case, concurrent access
operations to the same extreme of the queue are
possible

5Operating Systems

Concurrent access: Version 1

 For parallel access with 1 producer and 1
consumer

 You have to insert

 A semaphore "full" that counts the number of filled
elements

 A semaphore "empty" that counts the number of
empty elements

 The counter n can be removed

6Operating Systems

#define SIZE ...

...

int queue[SIZE];

int tail, head;

...

void init () {

tail = 0;

head = 0;

}

void dequeue (int *val) {

*val=queue[head];

head=(head+1)%SIZE;

return;

}

void enqueue (int val) {

queue[tail] = val;

tail=(tail+1)%SIZE;

return;

}

FIFO standard (non ADT)
without the variable n

Concurrent access: Version 1

7Operating Systems

Consumer () {

int val;

while (TRUE) {

wait (full);

dequeue (&val);

signal (empty);

consume (val);

}

}

Producer () {

int val;

while (TRUE) {

produce (&val);

wait (empty);

enqueue (val);

signal (full);

}

}

init (full, 0);

init (empty, SIZE);

Instead of n it uses
elements filled

elements empty

1 Producer
1 Consumer

Concurrent access: Version 1

8Operating Systems

 Solution 1 is simmetric

 The producer produces filled positions

 The consumer produces empty positions

 It can be easily extended to the case where
there are more producers and more consumers

 Producers and consumers operates on opposite
extremes of the buffer

 It can be done concurrently

 As long as the queue is not completely full or
completely empty

 Instead, two producers or two consumers must act
in mutual exclusion

Concurrent access: Version 2

9Operating Systems

Consumer () {

int val;

while (TRUE) {

wait (full);

wait (MEc);

dequeue (&val);

signal (MEc);

signal (empty);

consume (val);

}

}

Producer () {

int val;

while (TRUE) {

produce (&val);

wait (empty);

wait (MEp);

enqueue (val);

signal (MEp);

signal (full);

}

}

init (full, 0);

init (empty, SIZE);

init (MEp, 1);

init (MEc, 1);

P Producers
C Consumers

It is necessary to force mutual
exclusion between P and C

Concurrent access: Version 2

10Operating Systems

Readers & Writers

 Classical problem

 Courtois et al. [1971]

 Share data between two sets of concurrent
processes

 A set of Readers, which can access concurrently
to the data

 A set of Writers, which can access in mutual
exclusion, both with other Writers and Readers
processes, to the data

 Construct often used to create new synchronization
primitives

11Operating Systems

Readers & Writers

 There are two versions of the problem

 Precedence to Readers

 Precedence to Writers

 Common goals

 Respect the precedence protocol

 Maximize concurrency

12Operating Systems

Precedence to Readers

 Giving precedence to Readers means

 Privileging Readers access over Writers access, i.e.

 Readers do not have to wait as long as a writer is
in the CS

 Access protocol

 Readers can concurrently access to the data

 Until the Readers arrive, Writers have to wait

 When even the last Reader ends, then you can
wake up a writer (or a reader ... it depends on the
scheduler)

13Operating Systems

wait (w);

...

writing

...

signal (w);

wait (meR);

nR++;

if (nR==1)

wait (w);

signal (meR);

...

reading

...

wait (meR);

nR--;

if (nR==0)

signal (w);

signal (meR);

Reader

Precedence to Readers: Version 1

nR = 0;

init (meR, 1);

init (w, 1);

Writer

14Operating Systems

wait (meW);

wait (w);

...

writing

...

signal (w);

signal (meW);

wait (meR);

nR++;

if (nR==1)

wait (w);

signal (meR);

...

reading

...

wait (meR);

nR--;

if (nR==0)

signal (w);

signal (meR);

Reader

Precedence to Readers: Version 2

nR = 0;

init (meR, 1);

init (meW, 1);

init (w, 1);

Writer

To enforce the precedence to R
(the signal(w) unblocks an R)

15Operating Systems

Conclusions

 The solution uses

 A global variable (nR) counts the number of
Readers in the CS

 A semaphore for the mutual exclusion for the
access to the variable nR (meR)

 A semaphore for the mutual exclusion of more
Writers, or a Reader and the Writers (w)

 Un semaforo di mutua eslusione per writer (meW)

 Writers are subject to starvation, because they
can wait (be blocked) forever

 More complex solutions without starvation of the
Writers are possible

16Operating Systems

Precedence to Writers

 Giving priority to writers means

 A Writer that is ready, must wait the smallest
possible time

 Access protocol

 Each Writer must wait that all Readers finish

 Each Writer has a higher priority than every
Reader

17Operating Systems

wait (meW);

nW++;

if (nW == 1)

wait (r);

signal (meW);

wait (w);

...

writing

...

signal (w)

wait (meW);

nW--;

if (nW == 0)

signal (r);

signal (meW);

wait (r);

wait (meR);

nR++;

if (nR == 1)

wait (w);

signal (meR);

signal (r);

...

reading

...

wait (meR);

nR--;

if (nR == 0)

signal (w);

signal (meR);

Precedence to Writers

Reader Writer

nR = nW = 0;

init (w, 1); init (r, 1);

init (meR, 1); init (meW, 1);

18Operating Systems

Conclusions

 The solution uses

 Two global variables (nR and nW) to count the
number of Readers and Writers

 Two semaphores to guarantee mutual exclusion
(meR and meW) for the access to the variables nR
and nW

 Two semaphores to guarantee mutual exclusion
between Readers/Writers (r and w)

 Reader are subject to starvation, because they
can wait (be blocked) forever

 More complex solutions without starvation are
possible

19Operating Systems

The "Alternate direction tunnel"

 In an alternate direction tunnel

 Allow any number of cars (processes) to proceed
in the same direction

 If there is traffic in one direction, block traffic in
the opposite direction

20Operating Systems

The "Alternate direction tunnel"

 Extension to the Readers-Writers problem, with
two sets of Readers

 Data structure

 Two global counters (n1 and n2), one for each
direction

 Two semaphores (s1 and s2), one for each
direction

 A global semaphore for wait (busy)

 In its basic implementation, it can cause
starvation of cars (in one direction with respect
to the other)

21Operating Systems

wait (s2);

n2++;

if (n2 == 1)

wait (busy);

signal (s2);

...

Run (left to right)

...

wait (s2);

n2--;

if (n2 == 0)

signal (busy);

signal (s2);

wait (s1);

n1++;

if (n1 == 1)

wait (busy);

signal (s1);

...

Run (left to right)

...

wait (s1);

n1--;

if (n1 == 0)

signal (busy);

signal (s1);

Solution

left2right right2left

n1 = n2 = 0;

init (s1, 1); init (s2, 1);

init (busy, 1);

22Operating Systems

Dining (5) philosophers problem

 Model in which different resources are common
to different concurrent processes

 Due to Dijkstra [1965]

 Definition of the problem

 A table is set with

 5 rice dishes

 5 (Chinese) chopsticks each between two plates

 Around the table sit 5 philosophers

 Philosophers think or eat

 To eat each philosopher needs two chopsticks

 Chopsticks can be obtained one at a time

23Operating Systems

Model 0

 "Philosophical" solutions (not correct)

 Teach philosophers to eat with only 1 chopstick

 Provide more than 5 chopsticks

 Allow only at most to 4 philosophers to sit at the
table

 Force asymmetry

 Even position philosophers take
the left fork first

 Odd position philosophers take
the right fork first

24Operating Systems

Model 1

while (true) {

Think ();

wait (mutex);

Eat ();

signal (mutex);

}

 Use one binary semaphore (mutex) to protect
the access to the only resource "the food"

 Cancel concurrency

 Only one philosopher eats at the same time (in
two could eat)

init (mutex, 1);

25Operating Systems

while (true) {

Think ();

wait (chopstick[i]);

wait (chopstick[(i+1)mod5]);

Eat ();

signal (chopstick[i]);

signal (chopstick[(i+1)mod5]);

}

Model 2

init (chopstick[0], 1);

...

init (chopstick[4], 1);

 A semaphore for each chopstick

 It can cause deadlock

i [0, 4]

26Operating Systems

Solution

while (TRUE) {

Think ();

takeForks (i);

Eat ();

putForks (i);

}

 Data structures

 A state for each philosopher (THINKING, HUNGRY,
EATING)

 A semaphore for each philosopher (for access to
food)

 Another semaphore to manage the access in
mutual exclusion to the philosopher state variable

27Operating Systems

takeForks (int i) {

wait (mutex);

state[i] = HUNGRY;

test (i);

signal (mutex);

wait (sem[i]);

}

Solution

int state[N]

init (mutex, 1);

init (sem[0], 0); ...; init (sem[4], 0);

test (int i) {

if (state[i]==HUNGRY && state[LEFT]!=EATING &&

state[RIGHT]!=EATING) {

state[i] = EATING;

signal (sem[i]);

}

}

putForks (int i) {

wait (mutex);

state[i] = THINKING;

test (LEFT);

test (RIGHT);

signal (mutex);

}

