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Abstract—The radio spectrum is characterized by a noticeable
variability, which impairs performance and determinism of every
wireless communication technology. To counteract this aspect,
mechanisms like Minstrel are customarily employed in real Wi-Fi
devices, and the adoption of machine learning for optimization
is envisaged in next-generation Wi-Fi 8. All these approaches
require communication quality to be monitored at runtime.

In this paper, the effectiveness of simple techniques based on
moving averages to estimate wireless link quality is analyzed,
to assess their advantages and weaknesses. Results can be used,
e.g., as a baseline when studying how artificial intelligence can
be employed to mitigate unpredictability of wireless networks by
providing reliable estimates about current spectrum conditions.

I. INTRODUCTION

Wired links, like those employed in switched Ethernet, are
characterized by highly-deterministic behavior. This means
that the likelihood that frame transmission over a cable fails
is extremely small and can be neglected in most practical
situations. Conversely, this is untrue for wireless networks like,
e.g., Wi-Fi. Although the throughput featured by this kind of
networks has increased steadily over the past two decades,
to the point that it is now comparable to Gigabit Ethernet
(including 2.5, 5, and 10GBASE-T), the same improvements
were not achieved for reliability. When a single transmission
attempt is taken into account, i.e., when operating at the
physical (PHY) layer, there are non-negligible chances that the
frame is corrupted while traveling on air, due to disturbance
that impacts on signal propagation (either electromagnetic
noise from power electronics or interference from nearby
wireless nodes). What is worse, the failure probability is
likely to vary over time, sometimes abruptly and noticeably.
Automatic repeat request (ARQ) mechanisms implemented at
the medium access control (MAC) layer provide data-link
users a satisfactory degree of reliability, but the price to be
paid is that latency and jitters may worsen consistently due to
both the variable number of retries and random exponential
backoff.

When distributed industrial applications are considered,
characterized by both reliability and responsiveness con-
straints, where devices are interconnected by means of wireless
links (to support, e.g., mobility), suitable metrics are re-
quired for expressing the quality of communication at runtime.
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Should the quality of links fall below given thresholds, coun-
termeasures must be taken to prevent system malfunctions,
damages to equipment, and injuries to human operators. For
example, when fleets of cooperating Autonomous Mobile
Robots (AMR) are involved, they could be slowed down and
possibly stopped altogether if proper coordination is no longer
guaranteed due to a (temporary) communication outage.

Besides reliability, customarily quantified using the packet
loss ratio (PLR), the most relevant metric of time-aware
applications, like distributed control systems in industrial
plants, is latency. Often, the deadline miss ratio (DMR) is
used to describe how many packets arrive to destination
too late. More in general, knowing (at any given time) the
complementary cumulative distribution function (CCDF) of
the communication latency permits to evaluate the probability
with which timing constraints are expected to be violated.
From this point of view, lost messages and severely delayed
ones are treated as equivalent.

In this paper, we follow a different (and much simpler)
approach, by considering the failure probability ϵ for single
transmission attempts over a wireless link. The value of ϵ
is generally uninteresting to applications, since they rely on
the reliable MAC transmission services made available by the
data-link layer. Nevertheless, it permits, in theory, to infer
indirectly all the quantities of interest for them, including the
PLR (that coincides with the probability that all the retries
for a given packet fail) as well as statistics on communication
latency and power consumption (both of which depend on the
number of retries actually performed, which cannot exceed the
retry limit).

The above model can be characterized by means of mea-
surements performed on commercial devices deployed in a real
environment. For example, the statistical frequency with which
transmission attempts fail can be used to infer model param-
eter ϵ. Unfortunately, spectrum conditions are not stationary,
which leads to the need to resort to techniques like moving
averages (MA). As is well known, MA usage implies some
trade-off: using few samples enlarges estimation jitters due
to their randomness, worsening precision, whereas increasing
their number (and hence the time window on which they are
acquired) makes the estimation procedure unable to promptly
track variations of disturbance, ultimately resulting in poor
accuracy. For this reason, the need arises to find an optimal
compromise. To this extent, in the following we will consider
the mean squared error (MSE) with which the instantaneous
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value of the failure rate is estimated by comparing several
datasets, both generated artificially and acquired from experi-
ments.

The paper is structured as follows: in Section II the problem
of link quality estimation is introduced and a simple model is
derived that assumes that transmission attempts are statistically
independent, whereas in Section III some equations are given
that provide the precision offered by two approaches based
on moving averages in the case the spectrum is stationary.
Section IV analyzes the case of non-stationary conditions,
and checks under what conditions the previously derived
expressions can be applied satisfactorily. Some conclusions
are finally drawn in Section V.

II. WIRELESS LINK QUALITY ESTIMATION

The ability to satisfactorily characterize the behavior of
wireless links, in spite of their intrinsic randomness, is the
core of several techniques aimed to optimize throughput and
determinism of next-generation high performance wireless
networks. For this reason, the adoption of machine learning
(ML) techniques is explicitly envisaged in Wi-Fi 8 [1], as well
as in 6G cellular networks [2], [3]. We distinguish between
link quality estimation and prediction: the former refers to the
ability to provide at runtime reliable estimates of the current
instantaneous quality, whereas the latter aims to foresee what
will happen in the near future. In this paper we only deal with
estimation, as it is intrinsically simpler than prediction. It is
worth noting that estimation can be trivially seen as the limit
case of prediction.

Several works in the literature propose using ML to model
some aspects that impact on wireless network behavior [4],
[5], [6]. Some of them focus explicitly on Wi-Fi: this is the
case of [7], [8], and [9]. One of the problems of ML-based
algorithms (e.g., the different flavors of neural networks) is
that their operations are very complex and their performance
heavily depends on training. Conversely, results provided by
simpler techniques, like moving averages and regression, are
much easier to understand and explain [10], [11]. Using the
latter as benchmarks against which to check the performance
of the former could reveal very useful to understand the real
potential of ML applied to wireless spectrum modeling. This
was preliminarily done, to some extent, in [12].

Here, we move one step further in that direction, by consid-
ering two techniques for estimating the failure probability of
a link that rely on low-pass filters based on moving averages.
In particular, a very simple model is presented that describes
the estimation precision achieved by these techniques, under
the assumption that spectrum conditions are stationary. Then,
we evaluated to what extent the closed-form expressions we
derived can be applied to real non-stationary conditions.

A. Characterization of a Wi-Fi Link

In the following the IEEE 802.11 protocol [13] (Wi-Fi)
will be explicitly considered. However, most of what we say
applies with minimal changes to other wireless transmission
technologies as well. A real Wi-Fi link can be characterised by

repeatedly performing acknowledged one-shot frame transmis-
sions (i.e., where retransmissions are disabled), which permit
to probe the quality of the underlying channel as seen by
the sender. Every time the frame used for probing is received
correctly, the recipient returns an explicit confirmation (ACK
frame). By setting the retry limit of the sender to 0, no
retransmissions are performed when the ACK frame is not
heard and the ACK timeout expires. Starting from these
two mutually exclusive and exhaustive events, namely, ACK
receptions and timeouts, the sender can evaluate the link
failure rate (statistical frequency). As shown by the Software-
Defined MAC (SDMAC) framework [14], slight modifications
to the open-source drivers of popular commercial Wi-Fi boards
permit to detect and log these events on a per-frame basis.

Let xi denote the outcome of transmission attempt i (where
i ≥ 1) in a given experiment, either 1 for success or 0 for
failure. Every value xi corresponds to a directly observable
event in the real system. The sequence (xi)i≥1 can be seen as
an instance of a discrete-time binary random process (whose
state space coincides with the set {0, 1}). Let ϵi be the failure
probability of attempt i. Generally speaking, this kind of ran-
dom process can be modeled by defining the failure probability
as a function of time, ϵ : R → [0, 1], t 7→ ϵ(t). Admittedly,
this could be a rough approximation of reality, especially
when attempts are close to each other in time, as statistical
dependence among them is neglected. Nevertheless, this model
is typically acceptable provided that attempts are spaced wide
enough, so that outcomes are (mostly) uncorrelated.

If the time between two subsequent attempts is fixed, as in
our experiments (where channel probing is cyclic with period
Ts), we can write ϵi = ϵ(iTs), that is, sequence (ϵi)i≥1 is ob-
tained by “sampling” ϵ(t). It is worth stressing that ϵ(t) is just
a model parameter, which can not be measured (and not even
observed) directly in a real system, and the same applies to
the sequence of values ϵi. However, the latter can be estimated
from observable events like those described by xi values. An
example that illustrates this simple link model is depicted in
Fig. 1, where the shape of ϵ(t) (depicted in the upper part)
has both a fixed and a variable (cosine) contribution, while
a specific instance of the random process is shown below.
While obtaining ϵi values back from xi outcomes is generally
impossible, computing for them satisfactory estimates is often
feasible under specific assumptions.

B. Estimation of Link Quality

Among the different metrics that can be used to assess the
quality of a wireless link, in the following we will consider
the frame delivery ratio (FDR), defined as the number of
frames successfully delivered in a given interval divided by
the total number of attempts performed in that interval. The
FDR coincides with the simple moving average (SMA) of
transmission outcomes. In particular, at any time step i let

ui =
1

m

i∑
j=i−m+1

xj (1)



Fig. 1. Observable events xi and hidden model parameters ϵ(t).

denote the FDR evaluated on the most recent m samples, while

vi =
1

m

i+m∑
j=i+1

xj (2)

refers to a future interval that includes m samples, and is
therefore non-causal.

The most sensible choice for characterizing the instanta-
neous quality, we take as the target of our investigation, is

zi =
ui + vi

2
=

1

2m

i+m∑
j=i−m+1

xj , (3)

which represents the FDR in a reference interval [(i− m+
1)Ts, (i+m)Ts], centered around the current time step i, which
includes 2m outcomes. Unfortunately, this value can be only
evaluated “a posteriori”, since it refers in part to outcomes
of future attempts, and hence it cannot be used to optimize
network operation at runtime. Conversely, it represents a good
choice as the target for offline training of ML-based prediction
models, e.g., artificial neural networks (ANN) [15].

If FDR evaluation is required to be carried out at runtime,
no samples xj in the future (for which j > i) can be used.
In this case zi can be approximated by ui (or, equivalently,
ui can be used to estimate zi). In theory, a SMA u′

i could
be used that spans over an interval (in the past) other than
[i −m + 1, i]. Nevertheless, shifting this interval back in the
past worsen precision in non-stationary conditions, because
it makes spectrum variations between the two intervals larger.
Moreover, for space reasons we will not investigate the reason
why the width of the past interval has been selected equal to
m (half of the reference interval, that we assume to be decided
by the user). Intuitively, this is a trade-off aimed to balance
the contributions to the estimation error due to the variability
of vi and u′

i. Therefore, in the following, estimation of the
FDR zi through SMA will rely directly on ui, ẑSMA

i = ui.
A possible drawback of the SMA is that, weighting all the

previous samples in the same way might not provide the best
estimates when channel conditions are not stationary, because
of the lag with which estimation is calculated. As pointed out

in [10], the exponential moving average (EMA) of outcomes
xi, defined as

yi = αxi + (1− α)yi−1 (4)

could be a more effective way to estimate the current FDR
zi of the link, i.e., ẑEMA

i = yi. Unlike the SMA, it gives
more weight to recent samples, and hence it might seemingly
suffer less from non-stationarity of the wireless channel.
Most important, evaluating the EMA demands a very low
computation complexity in terms of both CPU and memory
usage. By letting β = 1− α, (4) can be rewritten as

yi = βyi−1 + (1− β)xi = βiy0 + (1− β)

i∑
j=1

βi−jxj (5)

To assess how good moving averages are to make estima-
tions about the link FDR, let di = zi−ui be the instantaneous
error between the target zi and its SMA estimate ui, while
ei = zi − yi refers to the EMA, that is, yi. A reasonable
choice for synthetically describing the precision of SMA and
EMA on the whole is their MSE, which can be evaluated “a
posteriori” from experimental outcomes as

µd2 =
1

N

N∑
i=1

d2i , µe2 =
1

N

N∑
i=1

e2i , (6)

where N is the number of samples in the considered dataset
for which both di and ei are defined and can be computed.

C. Probabilistic Model

Let us model every transmission outcome xi as a random
variable xi, which may assume value 0 with probability ϵi and
value 1 with probability 1− ϵi. Hence, the expected value of
xi at discrete time i is E[xi] = 1 − ϵi, and its probabilistic
variance is Var(xi) = ϵi(1−ϵi). Also estimators ui, vi, zi, and
yi, which are computed as linear combinations of outcomes
(xi)i≥1, can be modeled as random variables, ui, vi, zi, and
yi, respectively.

The expected value of the target FDR zi at time i, computed
according to (3), which represents the link quality metric we
wish to estimate, is

E[zi] =
E[ui] + E[vi]

2
=

1

2m

i+m∑
j=i−m+1

E[xj ] = 1− ϵ̄[i]. (7)

and coincides with one minus the mean value ϵ̄[i] of the failure
probability in the i-th reference interval. Eq. (7) relates the
expected value at a specific time of a quantity derived from
random variables that model observable events (the attempts)
and the arithmetic mean of the model parameters ϵj over an
interval centered around that time. A large part of the papers
in the literature that focus on the evaluation of link quality in
terms of the FDR rely on this well-known reasoning.

The expected value of the SMA estimate provided by (1) is

E[ui] =
1

m

i∑
j=i−m+1

E[xj ], (8)



whereas that provided by the EMA in (5) is

E[yi] = βiE[y0] + (1− β)

i∑
j=1

βi−jE[xj ]. (9)

Probabilistic variance can be easily computed under the
assumption that random variables xi are uncorrelated. This
is not unrealistic, provided that transmission attempts used for
probing the link are spaced adequately (as in the experiments
we did, where we set Ts = 0.5 s, corresponding to a slow 2Hz
probing rate). The variance for ui is

Var(ui) =
1

m2

i∑
j=i−m+1

Var(xj), (10)

for zi it is

Var(zi) =
Var(ui)+Var(vi)

4
=

1

4m2

i+m∑
j=i−m+1

Var(xj),

(11)

while for yi it is

Var(yi) = β2iVar(y0) + (1− β)2
i∑

j=1

β2(i−j)Var(xj) (12)

Variance of zi can be rewritten as

Var(zi) =
1

4m2

i+m∑
j=i−m+1

ϵj(1− ϵj) = (13)

=
1

2m

 1

2m

i+m∑
j=i−m+1

ϵj −
1

2m

i+m∑
j=i−m+1

ϵ2j


=

1

2m

[
ϵ̄[i] − ϵ̄2[i] − s2ϵ[i]

]
=

ϵ̄[i](1− ϵ̄[i])

2m
−

s2ϵ[i]
2m

where s2ϵ[i] is the uncorrected variance of ϵj values in the i-th
reference interval. As can be seen, Var(zi) is always less than
the case where the failure probability ϵj is constant over the
whole interval, in which case ϵj = ϵ̄[i],∀j ∈ [i −m + 1, i +
m] and s2ϵ[i] = 0. Unlikely this property is useful for FDR
estimation, as ϵi values are unknown and constitute what we
wish to determine from transmission outcomes.

Also estimation errors di and ei can be modeled as random
variables, di = zi − ui and ei = zi − yi, respectively. In
the following we will check whether or not their probabilistic
variance, that is, Var(di) and Var(ei), can be used to satis-
factorily estimate the related MSE.

III. STATIONARY CONDITIONS

Let us initially assume that the random process described
by the sequence (xi)i≥1 is stationary. This means that every
random variable xi does not depend on i, and can be described
simply as x, whose failure probability is ϵ. The related
expected value and variance will be denoted E[x] = 1 − ϵ
and Var(x) = ϵ(1− ϵ), respectively.

The same holds for the other random variables that derive
from x. The expected value of the link quality z computed “a
posteriori” is

E[z] =
1

2m

i+m∑
j=i−m+1

E[x] = E[x] = 1− ϵ, (14)

i.e., FDR z is an unbiased estimator of the success probability
1− ϵ of attempts, while its probabilistic variance is

Var(z) =
1

4m2

i+m∑
j=i−m+1

Var(x) =
Var(x)

2m
=

ϵ(1− ϵ)

2m
, (15)

which, as well known from theory, decreases linearly with the
number of samples in the reference interval (2m, in our case).
As expected, neither of them depends on i.

Similar reasoning applies to the causal SMA filter u, which
produces FDR estimations at runtime,

E[u] =
1

m

i∑
j=i−m+1

E[x] = E[x] = 1− ϵ, (16)

Var(u) =
1

m2

i+m∑
j=i+1

Var(x) =
1

m
Var(x) =

ϵ(1− ϵ)

m
. (17)

Concerning the estimate y provided by the EMA, some time
is needed to reach steady-state conditions. Since the initial
value y0 is typically selected as a fixed value, E[y0] = y0 and
Var(y0) = 0. By exploiting stationarity of x, (9) becomes

E[yi] = βiy0 + E[x](1− β)

i∑
j=1

βi−j = (18)

= βiy0 + E[x](1− β)
1− βi

1− β
=

= E[x] + βi(y0 − E[x]),

which has a bias, while its probabilistic variance given by (12)
becomes

Var(yi) = Var(x)(1− β)2
i∑

j=1

β2(i−j) = (19)

= Var(x)(1− β)2
1− β2i

1− β2
= Var(x)(1− β2i)

1− β

1 + β
.

Steady-state behavior of E[yi] and Var(yi), that is, when
enough time has elapsed so that the initial transient is finished
and the EMA has settled, can be studied by considering their
limits as i approaches infinity. In particular, since β < 1,

E[y] = lim
i→∞

E[yi] = E[x] = 1− ϵ (20)

which means that, provided enough samples have been fed
into the EMA filter, y satisfactorily behaves as an unbiased
estimator of the FDR. Similarly,

Var(y) = lim
i→∞

Var(yi) =
1− β

1 + β
Var(x) = (21)

=
α

2− α
Var(x) =

α

2− α
ϵ(1− ϵ) ≥ αϵ(1− ϵ)

2
.



Also processes describing the FDR estimation error are
stationary: in the SMA case it can be described as

d = z− u =
v + u

2
− u =

v

2
− u

2
(22)

whereas for the EMA, after the initial transient, it becomes

e = z− y =
v + u

2
− y =

v

2
−
(
y − u

2

)
. (23)

Their expected values are E[d] = E[z] − E[u] = 0 and
E[e] = E[z]− E[y] = 0, which implies that they are accurate
estimators.

Concerning variance, we have to distinguish between y and
u, which are calculated on samples in the past interval (and are
hence correlated), and v, which refers to the future interval.
The probabilistic variance of the SMA estimation error is

Var(d) =
1

4
(Var(v) + Var(u)) =

1

2m
Var(x) (24)

Instead, for EMA it is

Var(e) = Var
(v
2

)
+Var

(
y − u

2

)
. (25)

To simplify the rightmost term, we start from (5) and (1) and
split the sums of random variables xj in two disjoint intervals,
[1, i−m] and [i−m+ 1, i],

yi −
ui

2
= βiy0 +

i−m∑
j=1

(1− β)βi−jxj+ (26)

+

i∑
j=i−m+1

[
(1− β)βi−j − 1

2m

]
xj .

Sums refer to different sets of random variables xj , so they
are uncorrelated and the variance of the sum equals the sum
of variances. Since the channel (i.e., xi) is assumed to be
stationary, from (10) and (19) we have

Var
(
yi −

ui

2

)
= Var(x) · ξ (27)

where

ξ =

i−m∑
j=1

[
(1− β)βi−j

]2
+

i∑
j=i−m+1

[
(1− β)βi−j − 1

2m

]2

=

i∑
j=1

(1− β)2β2(i−j) +

i∑
j=i−m+1

[
1

4m2
− (1− β)βi−j

m

]
= (1− β)2

1− β2i

1− β2
+

1

4m
− 1− β

m

1− βm

1− β
(28)

and, when the initial transient has finished

Var
(
y − u

2

)
= Var(x)

[
1− β

1 + β
+

1

4m
− 1− βm

m

]
. (29)

Since Var(v/2) = Var(x)/4m, from 25 we have

Var (e) = Var(x)

[
1− β

1 + β
+

1

m

(
βm − 1

2

)]
(30)

= Var(x)

[
α

2− α
+

1

m
(1− α)m − 1

2m

]
.

From a probabilistic point of view the MSE of the SMA and
the EMA can be described as E[d2] and E[e2], respectively.
In turn, they are equal to E[d]2+Var(d) and E[e]2+Var(e).
Since in stationary conditions both u and y are unbiased
estimators of z, E[d]2 = 0 and E[e]2 = 0, which means that
the MSE corresponds to the probabilistic variance. However,
this is untrue when spectrum conditions vary over time.

A. Validation

A numerical evaluation was carried out to double check the
correctness of the above analysis and the related mathematical
derivations. Several instances of synthetic stationary binary
random processes (xi)i≥1 were generated using the rand()
function of the math C library, each one characterized by a
specific failure probability ϵ. In particular, we selected ϵ ∈
{0.1, 0.2, 0.4}. Every process included more than ten million
samples, to provide statistically reliable results. Although the
properties of rand() are not optimal in terms of randomness
(complete independence between subsequent values is not
ensured), it is good enough for our purposes.

Sequences (zi)i≥1, (ui)i≥1, and (yi)i≥1 were then calcu-
lated by feeding above outcomes to the related SMA and
EMA filters. To properly initialize filters and to tackle the
non-causality of z, a prefix and a postfix including 100000
samples each were prepended/appended to any dataset (gen-
erated using the same ϵ), which were not used for computing
statistics. Different configurations were considered for SMA
and EMA filters. To ensure fair comparison, their parameters
(m and α, respectively) were selected in such a way to
make the probabilistic variance of u and y about the same.
From (16) and (21), and under the hypothesis α ≪ 1, this
means setting α = 2/m. In particular, for the SMA we
selected m ∈ {10, 100, 1000, 10000}, which means setting the
reference interval to 5 s, 50 s, ∼8min, and ∼83min.

Finally, instantaneous FDR estimation errors, as given by
sequences (di) and (ei), were computed and statistics on them
evaluated. Results are reported in Table I. The mean signed
errors (µd and µe) provide an indication about estimation
accuracy, that is, the presence of systematic errors (bias). The
very small values observed for them confirm that, passed the
initial transient, moving averages ui and yi provide accurate,
unbiased estimates of the FDR zi. Conversely, the MSE
committed by SMA and EMA for FDR estimation coincides
with µd2 and µe2 , respectively. Since process (xi) is stationary
and estimators are unbiased, these values are practically the
same as variances σ2

d and σ2
e . For completeness, also the mean

absolute errors (MAE) µ|d| and µ|e| have been reported. Both
MSE and MAE permit to assess estimation precision.

In the table, the probabilistic variance, computed analyt-
ically by means of (24) and (30), is included next to the
MSE calculated on samples. As can be seen, µd2 ≃ Var(d)
and µe2 ≃ Var(e), these two quantities are very similar
for both the SMA and the EMA, that is, which confirms
correctness of our simple equations. Results show that, in
stationary conditions, closed-form expressions for the prob-
abilistic variance permit to approximate very well the MSE



TABLE I
STATIONARY CONDITIONS (SYNTHETIC DATA): FDR ESTIMATION ERROR STATS AND PROBABILISTIC VARIANCE FOR EMA (e) AND SMA (d)

Disturbance Filter params EMA FDR estim. error (mean, var, MSE, prob. var, MAE) SMA FDR estim. error (mean, var, MSE, prob. var, MAE)
ϵ m α µe σ2

e µe2 Var (e) µ|e| µd σ2
d µd2 Var (d) µ|d|

0.1

10 0.2000 -7.159744e-009 0.006453 0.006453 0.006458 0.061112 -2.040816e-008 0.004491 0.004491 0.004495 0.050046
100 0.0200 -2.889396e-008 0.000579 0.000579 0.000578 0.019158 -4.897959e-008 0.000449 0.000449 0.000449 0.016802

1000 0.0020 +2.328946e-007 0.000057 0.000057 0.000057 0.006018 +1.690816e-007 0.000045 0.000045 0.000045 0.005336
10000 0.0002 -2.251246e-008 0.000006 0.000006 0.000006 0.001918 -2.965408e-007 0.000005 0.000005 0.000004 0.001755

0.2

10 0.2000 +4.179911e-009 0.011481 0.011481 0.011491 0.085507 -2.040816e-008 0.007991 0.007991 0.007997 0.069377
100 0.0200 -3.031618e-007 0.001027 0.001027 0.001028 0.025564 -3.443877e-007 0.000798 0.000798 0.000800 0.022480

1000 0.0020 -1.029868e-006 0.000102 0.000102 0.000102 0.008040 -1.230765e-006 0.000079 0.000079 0.000080 0.007108
10000 0.0002 +9.944382e-008 0.000010 0.000010 0.000010 0.002556 +1.261883e-006 0.000008 0.000008 0.000008 0.002310

0.4

10 0.2000 -2.768329e-008 0.017237 0.017237 0.017242 0.106140 -6.122448e-008 0.012003 0.012003 0.011999 0.086243
100 0.0200 -1.478658e-007 0.001539 0.001539 0.001542 0.031327 -2.209183e-007 0.001197 0.001197 0.001200 0.027574

1000 0.0020 -1.042735e-006 0.000154 0.000154 0.000153 0.009902 -1.125969e-006 0.000121 0.000121 0.000120 0.008780
10000 0.0002 +3.624603e-007 0.000015 0.000015 0.000015 0.003134 +1.101138e-006 0.000012 0.000012 0.000012 0.002810

committed by moving averages: as expected from theory, the
MSE is inversely proportional to m for the SMA and grows
linearly with α for the EMA.

IV. NON-STATIONARY CONDITIONS

Above analysis was repeated by considering non-stationary
conditions, where the failure probability is not fixed. Two cases
were taken into account, where the sequence of transmission
outcomes (xi) was either obtained synthetically or derived
from experimental results.

A. Synthetic dataset

In this case, the instances of the random processes (xi) were
generated assuming that the failure probability varies over time
according to the law

ϵ(t) = ϵ0 +∆ϵ · cos 2πft, (31)

which implies

ϵi = ϵ0 +∆ϵ · cos 2πfTsi. (32)

Background disturbance, modeled by ϵ0, was set equal
to 0.1. According to our previous experience with wireless
communications, this is a realistic value in typical conditions
(every transmission attempt has 10% probability to fail). Two
values were selected for ∆ϵ, which defines the range in
which the failure probability may vary (ϵ0 − ∆ϵ ≤ ϵ(t) ≤
ϵ0 + ∆ϵ), that is, ∆ϵ ∈ {0.05, 0.005}, the second one
resembling quasi-stationary conditions. Frequency f defines
instead the rate at which disturbance varies. We selected
f ∈ {0.001Hz, 0.0001Hz}, which correspond to a periodicity
of disturbance in the order of 17 minutes and about three
hours, respectively.

Results are reported in Table II, where a color code (green,
yellow, red) has been employed to highlight to what extent
approximating the MSE with the probabilistic variance com-
puted according to the equations in the previous section is
acceptable. The first and third block of rows (∆ϵ = 0.005)
model quasi-stationary processes, where the failure rate varies
to a very limited extent. As can be seen, the MSE in this
case is approximated satisfactorily even for quite slow filters
(m ≤ 1000, α ≥ 0.002). When the cut-off frequency of SMA

and EMA low-pass filters comes close to f , approximation be-
comes poorer but still acceptable (see the case f = 0.0001HZ,
m = 10000, α = 0.0002),

In the second and fourth block of rows, variations of the
failure rate experience a tenfold increase, with ϵ that lies
in the range [0.05, 0.15]. In this case, approximating the
MSE with the probabilistic variance is acceptable only if the
cut-off frequency remains about one decade below f . Very
large discrepancies are observed, for example, in two rows,
corresponding to the cases f = 0.0001Hz, m = 10000,
α = 0.0002, and f = 0.001Hz, m = 1000, α = 0.002.
This is because moving averages configured this way not
only are unable to promptly track variations of disturbance,
but are counter-phased with respect to them, which enlarges
errors noticeably. A proof of this can be observed in the
fourth block of rows. By slowing down the filter further (case
f = 0.001Hz, m = 10000, α = 0.0002) the MSE diminishes
and comes closer to the probabilistic variance.

B. Experimental dataset

Our final analysis is carried out on experimental logs. In
particular, four random processes (xi) are involved that were
acquired from a real testbed that includes commercial devices
communicating over Wi-Fi links, as described in Section II.
The testbed was provided with multiple stations (STA) and
access points (AP), so that four links tuned on non-overlapping
channels 1, 5, 9, and 13 were operated contextually. Although
the equipment we employed for every channel was basically
equivalent (Wi-Fi boards were exactly the same and associated
to two pairs of identical APs), deployed in the same lab,
with transmitter and receiver antennas similarly spaced (about
3m), the acquired logs highlighted sensible differences among
spectrum conditions, because of the different sets of visible
interfering devices (number and spatial position), each one
with its own traffic (unknown to us).

Every single log included 1261735 samples, corresponding
to slightly more that one full week of continuous operations.
As in the previous cases, the initial and the final 100000
samples were not included in the statistics (but were feed to
the SMA an EMA filters).



TABLE II
NON-STATIONARY CONDITIONS (SYNTHETIC DATA): FDR ESTIMATION ERROR STATS AND PROB. VARIANCE FOR EMA (e) AND SMA (d)

Disturbance Filter params EMA FDR estim. error (mean, var, MSE, prob. var, MAE) SMA FDR estim. error (mean, var, MSE, prob. var, MAE)
f ϵ m α µe σ2

e µe2 Var (e) µ|e| µd σ2
d µd2 Var (d) µ|d|

0
.0
0
0
1
H
z 0.1± 0.005

10 0.2000 -7.159744e-009 0.006451 0.006451 0.006457 0.061084 -2.040816e-008 0.004490 0.004490 0.004493 0.050025
100 0.0200 -2.887927e-008 0.000579 0.000579 0.000578 0.019155 -4.897959e-008 0.000449 0.000449 0.000449 0.016804

1000 0.0020 +1.953063e-007 0.000057 0.000057 0.000057 0.006034 +1.242857e-007 0.000045 0.000045 0.000045 0.005352
10000 0.0002 +3.978745e-007 0.000010 0.000010 0.000006 0.002498 +2.091377e-007 0.000010 0.000010 0.000004 0.002609

0.1± 0.05

10 0.2000 +1.870554e-008 0.006354 0.006354 0.006453 0.059161 +1.530612e-008 0.004424 0.004424 0.004491 0.048583
100 0.0200 -1.189478e-007 0.000571 0.000571 0.000577 0.018763 -1.280612e-007 0.000444 0.000444 0.000449 0.016487

1000 0.0020 -2.741337e-007 0.000086 0.000086 0.000057 0.007420 -3.341836e-007 0.000075 0.000075 0.000045 0.006934
10000 0.0002 -2.978835e-007 0.000367 0.000367 0.000006 0.017170 -2.761887e-007 0.000512 0.000512 0.000004 0.020334

0
.0
0
1
H
z

0.1± 0.005

10 0.2000 -7.159744e-009 0.006453 0.006453 0.006459 0.061103 -2.040816e-008 0.004491 0.004491 0.004495 0.050038
100 0.0200 -2.890216e-008 0.000578 0.000578 0.000578 0.019151 -4.897959e-008 0.000449 0.000449 0.000450 0.016806

1000 0.0020 +1.686608e-007 0.000060 0.000060 0.000057 0.006197 +7.086734e-008 0.000050 0.000050 0.000045 0.005618
10000 0.0002 +2.012677e-007 0.000006 0.000006 0.000006 0.001924 -1.124949e-007 0.000005 0.000005 0.000004 0.001743

0.1± 0.05

10 0.2000 +1.870554e-008 0.006360 0.006360 0.006457 0.059235 +1.530612e-008 0.004422 0.004422 0.004494 0.048586
100 0.0200 -1.282116e-007 0.000597 0.000597 0.000578 0.019207 -1.403061e-007 0.000471 0.000471 0.000449 0.016999

1000 0.0020 -3.321854e-007 0.000413 0.000413 0.000057 0.017705 -3.509694e-007 0.000546 0.000546 0.000045 0.020616
10000 0.0002 +5.504237e-007 0.000011 0.000011 0.000006 0.002643 +4.384949e-007 0.000004 0.000004 0.000004 0.001659

TABLE III
NON-STATIONARY CONDITIONS (EXPERIMENTAL DATA): FDR ESTIMATION ERROR STATS AND PROB. VARIANCE FOR EMA (e) AND SMA (d)

Disturbance Filter params EMA FDR estim. error (mean, var, MSE, prob. var, MAE) SMA FDR estim. error (mean, var, MSE, prob. var, MAE)
ϵ m α µe σ2

e µe2 Var (e) µ|e| µd σ2
d µd2 Var (d) µ|d|

Ch 1
0.071803

10 0.2000 +4.969577e-007 0.004666 0.004666 0.004789 0.047277 +5.180195e-007 0.003235 0.003235 0.003332 0.039206
100 0.0200 +6.590860e-007 0.000430 0.000430 0.000428 0.016004 +1.036039e-006 0.000341 0.000341 0.000333 0.014120

1000 0.0020 -4.227369e-007 0.000113 0.000113 0.000042 0.007023 +7.674695e-006 0.000127 0.000127 0.000033 0.006936
10000 0.0002 +1.507616e-004 0.000113 0.000113 0.000004 0.006851 +1.124249e-004 0.000138 0.000138 0.000003 0.007478

Ch 5
0.063164

10 0.2000 +6.532483e-008 0.004141 0.004141 0.004252 0.043097 +2.354634e-007 0.002864 0.002864 0.002959 0.035841
100 0.0200 -1.204600e-006 0.000376 0.000376 0.000380 0.014880 -1.469292e-006 0.000293 0.000293 0.000296 0.013072

1000 0.0020 -4.619686e-006 0.000067 0.000067 0.000038 0.005779 -3.983570e-006 0.000067 0.000067 0.000030 0.005528
10000 0.0002 -8.130657e-005 0.000137 0.000137 0.000004 0.007572 -6.934991e-005 0.000189 0.000189 0.000003 0.008912

Ch 9
0.14465

10 0.2000 -5.726406e-007 0.008724 0.008724 0.008890 0.072528 -4.709269e-007 0.006056 0.006056 0.006186 0.058984
100 0.0200 -2.447254e-006 0.000815 0.000815 0.000795 0.022426 -2.924456e-006 0.000649 0.000649 0.000619 0.019902

1000 0.0020 +8.169690e-006 0.000248 0.000248 0.000079 0.008900 +7.279587e-006 0.000281 0.000281 0.000062 0.008558
10000 0.0002 +1.801074e-004 0.000241 0.000241 0.000008 0.008593 +2.087150e-004 0.000246 0.000246 0.000006 0.009030

Ch 13
0.255758

10 0.2000 +3.795014e-007 0.013374 0.013374 0.013676 0.092732 +3.767415e-007 0.009287 0.009287 0.009517 0.075160
100 0.0200 +2.563495e-006 0.001223 0.001223 0.001223 0.027746 +3.838054e-006 0.000978 0.000978 0.000952 0.024638

1000 0.0020 -1.434795e-005 0.000352 0.000352 0.000121 0.011134 -1.921711e-005 0.000395 0.000395 0.000095 0.010609
10000 0.0002 -1.672247e-004 0.000320 0.000320 0.000012 0.010295 -1.732733e-004 0.000326 0.000326 0.000010 0.011162

Results are reported in Table III. As can be seen from µd

and µe, accuracy is still very good. It worsens a bit when a
slower filter is employed (higher m or lower α), i.e., when
the cutoff frequency is decreased. This is probably due to the
fact that the number of experimental samples was one order
of magnitude smaller than for synthetic data, which amplifies
differences found at the beginning and at the end of the portion
of dataset on which statistics are computed.

Concerning precision (µd2 and µe2 , which also in this case
practically coincide with the sample variance σ2

d and σ2
e ), when

the filter is fast (m ≤ 100, α ≥ 0.02) estimation is clearly
poor, because of the limited number of samples on which
arithmetic means are computed. In this case, approximating
the MSE with the probabilistic variance is acceptable. Slowing
down the filter (m ≥ 1000, α ≤ 0.002) improves precision, but
the MSE can no longer be satisfactorily approximated by the
probabilistic variance. As intuitively expected, when filters are
slow (higher m or lower α) the EMA behaves slightly better
than the SMA (lower MSE). However, the real advantage of
the EMA is its very low computational effort.

A peculiar phenomenon is also observed: in some cases
(channels 1 and 5), decreasing the cutoff frequency makes
precision worsen (i.e., the MSE increases). See, e.g., the rows
corresponding to m = 1000 and m = 10000. Likely, this
behavior also affected the other channels (9 and 13), but for
values of m larger than 10000. This is not unexpected, as
an excessively slow filter is unable to suitably track FDR
variations, which consequently results in higher estimation
errors.

As show in [15], above behavior suggests that, when moving
averages are exploited for wireless link quality estimation, a
compromise should be found in order to maximize precision,
for instance by minimizing the mean error. Similarly to neural
networks, this can be done by a proper training phase, which
permits to select filter parameters starting from measurements
carried out on devices deployed in the real world.

V. CONCLUSIONS

Wireless communications are typically deemed unreliable
and not deterministic enough for adoption in real-time control
systems, like those found at the shop-floor in industrial plants,



because the radio spectrum suffers from sudden and mostly
unexpected phenomena like interference and noise that may
corrupt ongoing transmissions. The ability to estimate link
quality at runtime is essential to enable adaptive mecha-
nisms operating, e.g., at the MAC layer, whose purpose is
to improve overall network behavior. This kind of techniques
are customarily implemented in commercial equipment (for
instance, Minstrel permits to dynamically select the optimal
modulation and coding scheme in Wi-Fi), but they will become
increasingly important in the future to complement machine
learning, as foreseen by Wi-Fi 8.

A relevant metric to assess the instantaneous communication
quality of a link, which can be easily determined by the
transmitting STA for confirmed traffic, is the FDR evaluated on
an interval of a given width and centered on the current time.
Doing so requires a non-causal filter (i.e., one that needs to
know the future behavior), which is fine for post-analysis (e.g.,
for training a neural network) but is unfeasible for mechanisms
conceived to operate at runtime. For this reason, moving
averages like the SMA and the EMA are customarily adopted
for estimating the FDR, which can be easily parameterized
by means of the window width m and the smoothing factor
α, respectively. Both these approaches are accurate, since they
provide unbiased estimates. Precision depends instead on filter
configuration and actual disturbance. A convenient way to
express it is the MSE, although other quantities can be also
used, like the MAE.

In this paper, some simple formulas are derived for the
MSE committed by SMA and EMA for FDR estimation in
the simplistic case of stationary conditions. After numerically
verifying their correctness, we applied them to two classes of
non-stationary conditions. First, we generated some synthetic
datasets that describe random transmission processes, where
the failure probability is made up of both a fixed and a variable
contribution, the latter characterized by a sinusoidal shape.
Then, we considered some logs obtained from experiments
that involve a testbed including real Wi-Fi devices.

In both cases, our theoretical model provided acceptable
approximations for the MSE as long as SMA and EMA low-
pass filters are fast, in which case the main contribution to
the estimation error is due to the unavoidable variability of
outcomes (which are satisfactorily described by a random
process). When the cut-off frequency of filters is decreased,
however, their inability to promptly track variations of dis-
turbance becomes predominant. As results show, the MSE
reaches a plateau, after which it starts growing again. This
implies that, when moving averages are employed for link
quality estimation in real devices, a pre-training phase should
be carried out to minimize their MSE.

As clearly highlighted in several recent papers, more so-
phisticate solutions exist, like neural networks and multi-pole
filters, which are a much better option than SMA and EMA.
Nevertheless, results reported here, as well as the discussion
on MSE approximation based on what is seen in stationary
conditions, can be used as the baseline for evaluating the
performance of ML-based solutions. As future work we plan

to define some simple model that relies on closed-form yet
manageable expressions to approximately describe the MSE
in non-stationary condition, in order to provide a suitable
benchmark against which to check effectiveness of advanced
quality estimation (and prediction) techniques.
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