
1

SDMAC: A Software-Defined MAC for Wi-Fi to
Ease Implementation of Soft Real-time Applications

Gianluca Cena, Senior Member, IEEE, Stefano Scanzio, Member, IEEE, and
Adriano Valenzano, Senior Member, IEEE

Abstract—In distributed control systems where devices are
connected through Wi-Fi, direct access to low-level MAC op-
erations may help applications to meet their timing constraints.
In particular, the ability to timely control single transmission
attempts on air, by means of software programs running at the
user space level, eases the implementation of mechanisms aimed
at improving communication timeliness and reliability. Relevant
examples are deterministic traffic scheduling, seamless channel
redundancy, rate adaptation algorithms, and so on.

In this paper, a novel architecture is defined, we call SDMAC,
which in its current embodiment relies on conventional Linux PCs
equipped with commercial Wi-Fi adapters. Preliminary SDMAC
implementation on a real testbed and its experimental evaluation
showed that integrating this paradigm in existing protocol stacks
constitutes a viable option, whose performance suits a wide range
of applications characterized by soft real-time requirements.

Index Terms—IEEE 802.11, Wi-Fi, Software-Defined MAC,
SDMAC, Wi-Fi drivers, real-time communication, real-time wire-
less, experimental evaluation.

I. INTRODUCTION

Wi-Fi [1] adoption in industrial scenarios has been steadily
increasing over the past years. This is mainly due to its high
throughput and complete interoperability with Ethernet, which
achieve ubiquitous connectivity between devices, reducing at
the same time wiring harness complexity. However, when
distributed real-time control systems are taken into account
where devices are interconnected through Wi-Fi, simple and
flexible mechanisms are typically required for configuring
and managing network stations. They permit to easily define,
develop, and test new effective applications and solutions.
This is witnessed, for instance, by the recent introduction of
software-defined wireless networks (SDWN) [2].

In order to meet the specific timeliness and reliability
requirements of factory automation systems, parameters of the
medium access control (MAC) and physical (PHY) layers may
have to be suitably tuned, even at runtime. In particular, it
should be possible for applications to manage frame trans-
mission on air with finer detail than typical allowed in Wi-Fi
(where, e.g., the retransmission process is completely handled
in hardware by adapters and hidden to the users).

This work was partially supported by Regione Piemonte and the Ministry
of Education, University, and Research of Italy in the POR FESR 2014/2020
framework, Call “Piattaforma tecnologica Fabbrica Intelligente”, Project “Hu-
man centered Manufacturing Systems” (application number 312-36). Copy-
right (c) 2018 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org. The authors
are with the National Research Council of Italy, Istituto di Elettronica e
di Ingegneria dell’Informazione e delle Telecomunicazioni (CNR-IEIIT), I-
10129 Torino, Italy (e-mail: {name.surname}@ieiit.cnr.it).

The ability of the sender to timely start a frame transmission
on air and to timely obtain a notification of the delivery
outcome enables deterministic overlays to be layered atop
Wi-Fi, which help making transmission latencies known in
advance and, as much as possible, bounded. Moreover, appli-
cations may be interested in receiving management frames,
like beacons, which typically are under control of the driver
and are not made available to the user, or in accessing
information hidden in specific registers of the Wi-Fi adapter.

Currently, many commercial Wi-Fi adapters rely on a Soft-
MAC architecture, where most functions of the MAC sublayer
management entity (MLME) are implemented in software by
the device driver and are executed by the CPU of the host
computer [3, p. 28]. Only time-critical MAC operations (e.g.,
managing timeouts, like interframe spaces and backoff, and
performing the related actions upon their expiry) are executed
in hardware by the adapter. On the contrary, adapters that
comply to the FullMAC architecture directly implement the
whole IEEE 802.11 protocol stack (both the MAC and the
MLME). Thus, they are more complex and expensive.

Unlike FullMAC, advanced customization is possible for
SoftMAC devices, which includes redefining protocol param-
eters and bringing changes to the MLME. This is particularly
true for the Linux operating system, where device drivers are
often open source and can be easily modified. However, when
changes are required to the MAC or PHY layers, which involve
operations executed in hardware, other solutions are needed.
In these cases, functions of the wireless adapter can be pos-
sibly implemented using a software-defined radio (SDR) [4],
typically by employing an FPGA [5]. By doing so, practically
every aspect of the MAC and PHY layers can be customized to
comply with design specifications. Unfortunately, the required
effort is considerably high, and the same applies to cost.

In [6] the software-defined MAC (SDMAC) paradigm was
first proposed to provide applications executing in user space
finer control on operations of Wi-Fi adapters. Its performance,
in terms of latency, is not expected to match FPGA-based SDR
approaches, and also the ability to manage adapter behavior is
more limited. However, SDMAC offers a number of benefits.

To foster its adoption, SDMAC was designed as a flexible
framework that relies on commercial Wi-Fi adapters and only
requires limited and known modifications to device drivers. In
this way, porting to different equipment or dealing with up-
dated driver releases can be accomplished easily and quickly.
According to the SDMAC paradigm, operations related to
custom protocol functions are implemented in user space,
and rely on a suitable application programming interface
(API) that exposes the communication primitives provided by

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Wi-Fi adapters and the related operating parameters. To ease
implementation and testing, diagnostic information are also
provided by SDMAC about its inner state.

SDMAC enables direct access to the most basic adapter
operations. Probably, the most relevant example are confirmed
one-shot transmissions, on which most of the experimental
evaluation in this paper focuses. They can be seen as the
elementary building block on which every specific protocol
overlay (a supplemental mechanism layered above adapters,
and meant to improve some aspect, e.g., determinism) can
be built. In this case, automatic MAC retransmission upon
errors is disabled, and packet transmission simply consists
of one DATA frame followed, in case of success, by the
related ACK frame in the opposite direction. Having the
ACK frame for single attempts managed in the hardware of
the adapter unburdens the software of this task and ensures
higher reliability and performance, without practically limiting
SDMAC flexibility. Multi-shot transmissions, that permit a
configurable number of retries, can be also defined.

In addition, SDMAC provides a timely notification when
transmission ends, which makes the outcome of delivery
available to applications in user space. In this way, the re-
transmission process can be completely managed in software,
which enables additional behaviors besides those foreseen by
the standard specification. In general, the exact pattern of
frames appearing on air, including the related timings, can
be decided in SDMAC according to user-defined rules.

Preliminarily to the stable definition of the SDMAC inter-
face, one must determine if the performance this approach
delivers on real devices meets the typical requirements of
industrial applications. In this work, a thorough statistical
characterization of the latencies introduced by SDMAC was
performed, in order to assess whether this approach is adequate
for the intended scenarios or more complex and expensive
solutions, like SDR, have instead to be pursued.

Compared to the preliminary proposal in [6], a number of
enhancements are provided in this paper: 1) a taxonomy of the
most important SDMAC service primitives has been sketched;
2) an enhanced measurement system has been developed,
where timestamps are acquired in several different places
of the protocol stack; 3) a set of specific guidelines and
optimizations is provided that sensibly improves SDMAC
performance over [6]; and, 4) a more extensive analysis was
performed on the dependence between latency and transmis-
sion outcome. The paper is organized as follows: in Section
II the SDMAC architecture, its basic properties, and possi-
ble application scenarios are described. Section III focuses
on SDMAC implementation, while Section IV describes the
measurement system. A discussion on results is included in
Section V, followed by concluding remarks.

II. SOFTWARE-DEFINED MAC
SDMAC implementation resides partly in user space and

partly in kernel space. In particular, small blocks of code
have to be placed in specific positions of the device driver
to perform specific operations (e.g., to capture relevant infor-
mation). Effortless integration in existing device drivers was a
key design requirement. Part of SDMAC duties is to transfer
information from user space to kernel space, and vice-versa.

A. Taxonomy of SDMAC services
SDMAC services can be subdivided in two broad classes:

transmission-oriented and MAC-layer management.
1) Transmission-oriented services: These services deal

with data exchanges among STAs at the data-link layer, and
are the building blocks that permit applications to precisely
coordinate their actions on air, enabling timely data delivery.
While they somehow resemble conventional MAC transmis-
sion services performed in hardware, the overall protocol
execution takes now place in software under user control.

SDMAC services comply to the OSI model: request and
confirm primitives are defined in the originator, and indica-
tion in the recipient. The response primitive is not foreseen,
because in Wi-Fi it is mapped on ACK frames, which are
automatically sent by the adapter of the recipient STA after
a short interframe space (SIFS) has elapsed from DATA
frame reception. For unconfirmed traffic, only the request
and indication primitives are needed. SDMAC data exchange
services are implemented through the SDMAC_DATA_req(),
SDMAC_DATA_con(), and SDMAC_DATA_ind() func-
tions. A conceptual draft of their prototypes, together with
the most important parameters, is reported in Table I.
SDMAC_DATA_req() is used to send a packet. Parameter

if identifies the target interface in multi-adapter configura-
tions, whereas id is a packet identifier. The value of id is
initialized by the calling application, and must be unique in
the related scope. If more than one application is invoking
SDMAC primitives at the same time, each of them has its own
scope and is free to select its specific values for id. Coherence
between the id values in user and kernel spaces is managed
directly by SDMAC. In the quite common implementation
we considered in this paper, a character device is used to
link these two execution contexts. Parameter ac specifies the
queue of the adapter where the packet will be buffered for the
forthcoming transmission. Typically, ac corresponds to one of
the 4 access categories (AC) foreseen by every recent adapter
complying with IEEE 802.11e, i.e., voice, video, best effort,
and background, and permits to differentiate the quality of
service (QoS) for specific classes of transmitted packets.
SDMAC_DATA_con() is used to obtain a timely notifica-

tion at the end of packet transmission. It also provides the
transmission outcome (either success, when the ACK frame
is received, or failure, in case ACKTimeout expired and the
retry limit was reached). To permit confirmations to be paired
by the user with the related requests, the id of the packet to
which the notification refers is returned. Its default behavior
is to block the caller until the outcome is provided.
SDMAC_DATA_ind() is called by the recipient STA to

wait for the arrival of a packet. The returned packet identifier
idr is unique on the recipient. Depending on the specific
implementation, it could be coupled with the index id chosen
by the originating STA (this can be useful, e.g., for the
implementation of seamless redundancy [7]).

2) MAC-layer management services: These services are
meant to complement standard MLME ones, and support the
additional features enabled by SDMAC. MAC implementation
is partitioned in several functional blocks, either hardware (in
the adapter) or software (in the device driver). Real adapters
(e.g., Atheros) are typically made up of a number of queue

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

TABLE I
SAMPLE PROTOTYPES OF THE MAIN FUNCTIONS INCLUDED IN THE SDMAC API (NON-EXHAUSTIVE — FOR INFORMATIONAL PURPOSES ONLY).

Name Description

SDMAC DATA req(if, id, data, ac, ...) Send packet id, with payload data, on queue ac of interface if

SDMAC DATA con(if, *id, *outcome, *ac, ...) Obtain transmission status outcome for packet id, on queue ac of interface if

SDMAC DATA ind(if, *idr, *data, *ac, ...) Receive packet idr, bearing payload data, from interface if

SDMAC DATA set(if, name, value, id, ac, ...) Set attribute name of interface if to value value (optionally, for packet id or queue ac)

SDMAC DATA get(if, name, *value, id, ac, ...) Get value value of attribute name of interface if (optionally, for packet id or queue ac)

Star symbol “*” denotes a returned value, while ellipsis “...” indicates additional and optional parameters (still to be defined).

control units (QCU) for managing transmission queues, each
of which is linked to exactly one DCF control unit (DCU) for
dealing with channel access. Each QCU/DCU pair deals with
a specific class of transmissions (e.g., a given AC). A single
protocol control unit (PCU) and a single DMA receive unit
(DRU) are also there.
SDMAC_DATA_get() and SDMAC_DATA_set() are de-

signed bearing in mind the above architecture. Parameters
to be read/written may refer to: 1) the adapter as a whole
(e.g., BSSID, ACK timeout, and general-purpose statistics);
2) a specific queue of the adapter, as specified by ac (e.g.,
TXOP, AIFSN, CWmin and CWmax); or 3) a single buffered
packet, as specified by id (e.g., timestamps). In the third
case, parameters can be also written/read contextually to the
related SDMAC_DATA primitives, by augmenting the related
functions with suitable arguments. Notable examples are the
number of allowed tries and their rates (request) and the
number of actually performed transmission attempts (confirm).
To unburden programmers and increase SDMAC performance,
default values can be defined for parameters.

A precise definition of the SDMAC API is out of the
scope of the current paper, which only focuses on performance
aspects, and is left as future work.

B. SDMAC properties

Several properties make SDMAC appealing for a number
of application contexts, with and without real-time constraints.
First, only features required in a particular application context
have to be implemented and integrated in the driver, and the
same holds for attributes describing the inner MAC status. For
instance, transmission-oriented SDMAC_DATA functions are
only needed when the default send/receive functions provided
by the protocol stack do not offer the capabilities required by
applications. In particular, SDMAC_DATA_con() is manda-
tory when notifications on packet delivery are needed.

SDMAC was designed bearing in mind easy porting on a
wide range of devices, including updated releases of existing
drivers. As a matter of fact, a number of projects exist
for hard real-time implementations of protocol stacks, but
they are seldom up-to-date and hardly work with the most
recent network adapters. Remarkable examples are RTNet and
EtherLab. RTNet provides a hard real-time protocol stack and
driver for wired and wireless adapters. Unfortunately, Wi-Fi
drivers are only available for few legacy adapters and are
mostly in a prototype stage. Likewise, a specific hard real-
time driver [8] was released for EtherLAB, but it only targets
a very specific kind of Ethernet adapter (Wi-Fi is not even
envisaged in this case). While adopting hard real-time drivers

is definitely the best choice from a performance viewpoint, it
is only acceptable for applications based on specific hardware,
for which no updates are foreseen over time.

The ability to precisely control IEEE 802.11 MAC behavior
by means of code in user space is the most important feature
of SDMAC. It also enables the main Wi-Fi communication
parameters to be tuned, even at runtime and with per-packet
granularity. Besides, the availability of a well-defined SDMAC
framework may dramatically reduce the time for prototyping
wireless systems with specific communication needs. Devel-
opers can benefit from this flexibility, e.g., by defining custom
traffic management and enhanced retransmission schemes. For
example, Fig. 1 shows how a data transmission is performed,
both in conventional Wi-Fi and with a custom SDMAC-based
implementation. When using existing transmission services in
Linux (based on sockets), management of retries and backoff
is entirely performed by the adapter, and no confirmation is
provided to the user when transmission ends. Conversely, by
using SDMAC, it is up to the user to decide the exact way
retransmissions are carried out (e.g., how many attempts can
be performed and how much they are spaced).

As shown in the figure, code in user space is executed
upon failure of transmission attempts, which can drive pro-
tocol operations at runtime, enforcing a specific behavior.
The only drawback is that, unlike operations carried out by
the adapter with precise timings (tolerances are below 1µs),
delays and jitter introduced by real SDMAC implementations
may lower determinism tangibly, which directly affects the
benefits it can actually offer. In order to prove SDMAC
practical feasibility, this paper focuses on the experimental
characterization of time-critical functions, and in particular on
the use of SDMAC_DATA_req() and SDMAC_DATA_con()
to perform confirmed one-shot transmissions. Mainly for space

Deferral is completely managed in hardware

User
software

ACK
timeout DIFS

SIFS

DATA frame

send()

SIFS

SDMAC_DATA
_req()

SDMAC_DATA
_con(-)

SDMAC_DATA
_req()

SDMAC_DATA
_con(+)

No confirmation is
provided to users

a) Sockets

b) SDMAC

Random
Backoff

TSDMAC_req TSDMAC_con

DATA frameACK
timeout DIFSDATA frame

DATA frame

ACK
frame

h/w
s/w

TX
error

TX
error ACK

frame

TX
RX

TX
RX

h/w
s/w

Fig. 1. Management of retransmissions (conventional sockets and SDMAC).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

reasons, evaluation of SDMAC_DATA_ind() was not per-
formed. In the experiments, we measured how much it takes
for SDMAC to send a frame on air and obtain the outcome
of delivery (kind of a round-trip delay). This latency is what
actually matters for many deterministic MAC overlays, as
sharing the wireless spectrum among STAs can be carried out
more efficiently and predictably if delays and jitters due to
frame originators (not recipients) are known in advance.

It is worth pointing out that using SDMAC to manage
retransmissions in software, as shown in the lower part of
Fig. 1, negatively affects throughput. However, this is not the
most important performance metric for real-time applications.
In these cases, the ability to precisely control how and when
any single attempt, related to a specific frame transmission,
takes place on air, is more important.

We decided not to analyze MAC-layer management services
because they are not time-critical.

C. Application contexts that can benefit from SDMAC
1) Time Division Multiple Access: Recent Wi-Fi specifi-

cations [1] define the enhanced distributed channel access
(EDCA) and hybrid-coordination-function controlled channel
access (HCCA). EDCA is completely distributed, but relies
on a random access scheme. Conversely, while offering de-
terministic access, HCCA relies on a centralized coordinator.
The optimal choice in many industrial scenarios, however, is
deterministic distributed channel access.

Time division multiple access (TDMA) [9], [10], [11], [12]
is a popular distributed approach for sharing the communica-
tion support in time-critical applications, and can be applied
to wireless networks by constraining each node to access the
channel exclusively during its assigned time slots. If nodes
are synchronized, so that they share the same time base [13],
[14], it is possible to coordinate their access to the underlying
network even in the absence of a repeated superframe (e.g.,
in Wi-Fi). The ability of STAs to send frames on air at
precise instants permits to correctly dimension safety margins
of time slots. The more accurate timings are, the lower the
wasted bandwidth. In turn, this means higher process data rate.
Therefore, knowing a priori SDMAC transmission latencies is
essential to correctly configure TDMA exchanges.

2) Deadline-driven traffic scheduling: Deciding transmis-
sion order of data according to their deadlines is another
context where SDMAC can be advantageous. Besides bounded
transmission latency, a prompt notification of the transmission
outcome (success or failure) permits the scheduler to timely
select the next frame to be sent on air according to specific
strategies. In addition, statistical information collected in the
driver and made available to the scheduler via the SDMAC
interface enables it to proactively react to environmental
changes. Knowledge of the round-trip delay measured at the
user layer for single confirmed transmission attempts can
be profitably exploited in scheduling algorithms, e.g., the
earliest deadline first (EDF), to account for the actual channel
occupation of data exchanges.

For example, in [15] transmissions (and retries) of pending
frames take place according to their absolute deadlines. The
related EDF scheduler can be implemented as a soft real-
time application in user space that relies on SDMAC. Clearly,

SDMAC_DATA_req(12,data)

SDMAC_DATA_con(&id,&ack)

Application

InterruptRing buffer

API /

Socket

DRIVER
(device

indep.)

DRIVER
(device

dep.)

Hardware

ISR

DRIVER
(device

dep.)

Tasklet

DRIVER
(device

indep.)

API
Character

device

Ether

t1

t2

t3

t4

t6

t5

t7

t8

t9���_���
�	

���_���
��
_���

���_���
��
_���

���_���

���_���

��

���_���
��
_���

���_���
��
_���

���_���
�	

���_���

Hardware

����

Fig. 2. SDMAC implementation schema.

resulting performance depends on SDMAC overhead and
accuracy. Another relevant example is the SchedWiFi proposal
[16], which combines distributed channel access and deadline-
driven traffic scheduling and also supports aperiodic traffic. It
is based on TDMA and makes use of a Time-Aware Shaper
module to isolate high-priority traffic in predefined slots.

3) Seamless redundancy: SDMAC can be profitably em-
ployed to efficiently implement seamless Wi-Fi redundancy
[17]. The ability to perform confirmed one-shot transmis-
sions, remove packets from transmission queues, and, possibly,
abort ongoing transmissions on adapters, enables sophisticated
strategies, like duplication avoidance in Wi-Red [7], also
including proactive heuristics based on network statistics. A
preliminary, simplified implementation is described in [18].

4) Additional application contexts: Scenarios that can ben-
efit from SDMAC include, e.g., enhanced rate adaptation
techniques and real-time roaming of mobile STAs. Besides,
experimental results reported here can be used to characterize
in a realistic way in-node delays in network simulators.

III. SDMAC IMPLEMENTATION

Practical implementation of SDMAC_DATA_req() and
SDMAC_DATA_con() in a typical Linux system (and the
related device drivers) is schematically shown in Fig. 2.

1) SDMAC_DATA_req(): A reasonable option is to map
the SDMAC primitive for sending data directly on POSIX raw
sockets, and in particular on the sendto() function, as done
in this work, or sendmsg(), if ancillary information have to
be conveyed with the packet (e.g., parameters id and ac, as
well as attributes managed by SDMAC_DATA_set()). The
use of standard POSIX implies that the request path (before
transmission or air) coincides with the conventional Linux pro-
tocol stack. Consequently, no changes at all have to be made to
the driver. As shown on the left side of Fig. 2, the application
in user space issues a call to SDMAC_DATA_req(), which in
turn invokes sendto() on the related socket. After execution
of the device dependent and device independent components

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

of the driver, the packet is inserted into the ring buffer, which
coincides with the transmission queue of one of the QCU/DCU
blocks of the Wi-Fi adapter.

Implementation of confirmed one-shot transmissions re-
quires automatic MAC layer frame retransmissions to be dis-
abled. Depending on the specific driver and network adapter,
this can be easily achieved in user space by configuring the
retry limit to 0 (e.g., using the iwconfig command) or, if
this option is not supported, by modifying the driver (as we
did here). In the latter case, developers are required to find
the correct position in the driver code where retransmissions
can be disabled. In the following experiments, Atheros Wi-Fi
adapters based on the ath9k driver were used. They are very
popular in the research community, since the driver is available
as open source and is not based on proprietary firmware.

For ath9k-compliant adapters, every outgoing packet is
associated with a suitable memory structure (TX descriptor)
that contains packet-specific attributes. Upon packet transmis-
sion request, the related TX descriptor is instantiated and
inserted into the ring buffer by the driver. It will be fetched
autonomously (in DMA) by the network adapter for trans-
mission on air. To provide finer control on single transmission
attempts, up to four transmission series can be defined for each
descriptor. Specific fields exist to configure, e.g., the maximum
number of attempts that can be automatically performed for
each series (tx_tries0/1/2/3) and the transmission rate
the adapter has to use for them (tx_rate0/1/2/3). Actual
values for such fields are selected by the driver on a per-packet
basis, typically according to the Minstrel [19], [20] algorithm.
Rate adaptation is an effective way to increase communication
reliability. For custom SDMAC transmission services, e.g.,
confirmed one-shot transmissions, it has to be implemented
at user space level, either by SDMAC or by the application.

2) SDMAC_DATA_con(): The originating STA is notified
of the outcome of each packet transmission either directly,
when an ACK frame is received from the recipient, or indi-
rectly, when it is not received before ACKTimeout expiration.
Both events cause the network adapter to raise an interrupt,
which is served as soon as possible by the operating system
through the related interrupt service routine (ISR) [21]. The
ISR is aimed at managing time-critical tasks. Instead, other
activities are executed as a tasklet, which is a Linux mech-
anism aimed at deferring code execution so as to decrease
interrupt response latencies. Tasklets are managed by the same
CPU that served the interrupt (i.e., that ran the ISR), and are
executed in interrupt context (i.e., they cannot be preempted by
other tasks). Tasklet code can be divided in two components,
device dependent and device independent. The first makes
access to registers of the specific network adapter, while in the
latter the same code is shared among all the devices managed
by the device driver. To make integration of SDMAC into
device drivers easier, we placed the code to detect transmission
outcomes in the device independent part, to the detriment of
latency, which worsens slightly. Specifically, for ath9k, it
fitted in the ieee80211_tx_status() function.

With POSIX sockets, the confirmation path does not reach
applications directly. Conversely, the outcome of each packet
transmission in SDMAC is transferred in user space by means
of a character device, and made available to applications

TABLE II
DESCRIPTION OF MEASUREMENT PLANES FOR TIMESTAMPS.

Timestamp Place in the code where the timestamp is taken

R
eq

u
e
st

p
a
th t1 Just before SDMAC DATA req() invocation

t2 First instruction executed in the device driver

t3 First instruction of the device dependent code in the device driver

t4 Just after the packet has been queued into the ring buffer

C
o
n

fi
r
m
.
p
a
th t5 First instruction of the ISR associated to the device driver

t6 First instruction of the tasklet

t7 First instruction of the device independent code in the device driver

t8 Just before transmission outcome is written in the character device

t9 Just after SDMAC DATA con() releases control

through SDMAC_DATA_con(). To this purpose, we used a
semaphore in kernel space and a blocking read() system
call in the user space SDMAC_DATA_con() function.

Determinism of communication between kernel and user
spaces could be improved [22], but this requires to set up a
hard real-time environment, which sensibly increases configu-
ration effort. Besides, doing so does not practically guarantee
hard real-time behavior because, at present, only few prototype
implementations exist of hard real-time Wi-Fi device drivers.
Experimental results highlighted that the jitter induced by
the character device is negligible when compared to other
components. A possible alternative to character devices is the
ioctl() function, but it requires many more changes to the
driver code and was replaced in newer drivers by the netlink
interface. Unfortunately, netlink worsens determinism [23].

IV. MEASUREMENT SYSTEM

To profile the most significant software blocks in the request
and confirmation paths, small, specific pieces of code were
added to SDMAC. As shown in Fig. 2 and Table II, several
meaningful reference planes were identified. For every packet
transmission, a timestamp was obtained as close as possible
to each reference plane, by reading the Time Stamp Counter
(TSC) register of the CPU. The path between the invocation
of SDMAC_DATA_req() (at time t1) and the unblocking of
SDMAC_DATA_con() (at time t9) can be decomposed as

Tpath = t9 − t1 = TSDMAC req + Ttoa + TSDMAC con (1)

where TSDMAC req = Tsw req + Thw req and TSDMAC con =
Thw con + Tsw con refer to the delays introduced by SDMAC
(both software and hardware) on the request and confirmation
paths, respectively, while Ttoa is the time taken for transmis-
sion on air. Software latencies on the two paths can be further
subdivided as, respectively,

Tsw req = TAPI
sw req + TDRV ind

sw req + TDRV dep
sw req (2)

Tsw con = T ISR
sw con + TDRV dep

sw con + TDRV ind
sw con + TAPI

sw con .

By defining Thw = Thw req + Thw con as the overall
round-trip delay due to Wi-Fi adapter hardware, the total
overhead introduced by SDMAC on confirmed transmission
(including both TSDMAC req and TSDMAC con) comprises all
contributions to Tpath in Fig. 2 except Ttoa and can be
expressed as

TSDMAC = Tsw req + Thw + Tsw con = Tpath − Ttoa . (3)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

When automatic MAC retransmissions are disabled, as for
confirmed one-shot transmissions, Ttoa for packets for which
an ACK was successfully received (acked) is given by

Ttoa = Tacc + (TDATA + TSIFS + TACK) (4)

where TDATA and TACK are the durations of DATA and ACK
frames, respectively, TSIFS is the SIFS duration, and Tacc is the
time taken by the MAC to access the wireless medium. TSIFS
is constant and only depends on the specific PHY layer. When
rate adaption algorithms are disabled, also TDATA and TACK

are fixed and can be easily computed. Instead, Tacc is, by its
nature, not deterministic, as it depends on the interference due
to transmissions performed by nearby wireless devices.

Not every transmitted packet receives a confirmation, as
either the DATA or the ACK frame may be corrupted. From
the originator viewpoint, these situations coincide and denote a
transmission failure. However, in the second case the recipient
receives data correctly. Statistics on latencies for packets for
which no ACK was received (non-acked) were computed
separately. The related quantities are identified with superscript
“∗”, and not necessarily correspond to acked frames. An
exception is the request path, which is unaffected by the
transmission outcome. For non-acked frames (3) becomes

T ∗
SDMAC = Tsw req + T ∗

hw + T ∗
sw con = T ∗

path − T ∗
toa (5)

where, for confirmed one-shot transmissions,

T ∗
toa = Tacc + TDATA + TACKTimeout. (6)

A. Software architecture and testbed

Experimental evaluation of SDMAC performance was car-
ried out using a purposely developed testbed, whose archi-
tecture is depicted in Fig. 3. The measurement system was
implemented on a PC equipped with a 3.5GHz Intel® i3-4150
CPU, Intel® B86 Chipset, and 4GB 1600MHz DDR3 Dual
Channel RAM, running the Linux kernel v. 3.14.61 and the
Ubuntu 14.04.4 LTS distribution. Energy management features
and frequency scaling were disabled to improve determinism,
according to Intel® guidelines [24], [6]. A dual-band TP-Link
TL-WDN4800 was used as Wi-Fi adapter, managed by the
ath9k device driver v. 4.1.1, and configured to comply with
IEEE 802.11a, since this is the simplest way to prevent frame
aggregation (the option to explicitly disable aggregation is
planned for the final SDMAC version). A generic access point
(AP) was configured to set up an infrastructure Wi-Fi network.
In the context of this paper, its performance is irrelevant,
because it only has to reply with an ACK frame to every DATA
frame sent by the PC. Further details on the measurement
system can be found in [6].

B. Measurement technique

To correctly characterize SDMAC latencies due to the hard-
ware, we need to make Tacc = 0 in the experiments. In partic-
ular, delays caused by the clear channel assessment, which de-
fers frame transmission when the channel is sensed busy, must
be avoided. To this extent, a peculiar technique was employed,
which guarantees that the channel is idle (practically) every
time a transmission request is performed by the measurement

Measurement Application
while (true) {
SDMAC_beacon_ind()
sleep(Twait)
SDMAC_DATA_req(id,data,0)
SDMAC_DATA_con(&id,&ack)
get_stats()

}

Character

device

InterruptRing buffer

API /

Socket

DRIVER
(device

indep.)

DRIVER
(device

dep.) ISR

DRIVER
(device
dep.)

Tasklet

API

Hardware

Logger Char.

device

Network
analyzer

Promiscous

mode

Log

DRIVER
(device

indep.)

Kernel Space

User Space

Fig. 3. Implementation schema of the measurement system.

TABLE III
CONFIGURATION OF PARAMETERS FOR EXPERIMENTS

Name Description Value

Tbeac Time interval between adjacent beacons 51.2 ms

Twait Offset between beacons and measurement frames 20 ms

R Fixed transmission rate for all experiments 54 Mb/s

TDATA Duration of DATA frame transmission 36µs

TSIFS Duration of short interframe space (SIFS) 16µs

TACK Duration of ACK frame transmission 44µs

Tslot Slot time 9µs

task. After Tacc contribution has been removed, Thw can be
easily evaluated as Thw = t5−t4−(TDATA + TSIFS + TACK)
for acked frames and T ∗

hw = t5−t4−(TDATA + TACKTimeout)
for non-acked ones.

A number of countermeasures were taken to prevent inter-
ference between the frames sent by the measurement task and
concurrent traffic on air, as described below.

1) Channel selection: The AP in the testbed (and, as a
consequence, the Wi-Fi adapter in the PC) were configured
on a channel in the 5GHz band not currently in use by others
STAs. At the time the experiments were carried out, traffic
on such band was, on average, by far lower than on the quite
crammed 2.4GHz band. The iwlist Linux command was
used to discover a Wi-Fi channel on which no APs were visible
in the place where the testbed was deployed. We found that
channel 165 satisfied this property. Traffic on channel 165
was then monitored using WireShark, before and after each
experiment. To prevent any possible interference with other
frames from affecting results, network traffic was logged at
runtime by the measurement system (see Section IV-B3).

2) Preventing interference with beacons: The above coun-
termeasure alone does not solve the problem of interference. In
fact, the AP used in our testbed periodically broadcasts beacon
frames (every Tbeac), which may interfere with the frames sent
by the measurement task. An effective approach to prevent this
from happening is to synchronize operations of the measure-
ment task to the AP, so as to evenly interleave measurement
frames and beacons. In particular, the measurement task was
instructed to wait for Twait = 20ms ' Tbeac/2 following
every beacon event before invoking SDMAC_DATA_req().
Function SDMAC_beacon_ind(), which relies on the char-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

acter device, was purposely defined to notify the user applica-
tion of the beacon arrival (detected in the driver). After obtain-
ing the transmission outcome through SDMAC_DATA_con(),
the measurement task invokes get_stats(), which relies
on a separate character device (logger), to transfer timestamps
t2...8 (acquired in kernel space) to user space, where they are
logged to memory.

3) Preventing interference with other frames: In spite of
the previous two countermeasures, the presence of sporadic
transmissions on the selected channel can not be ruled out
for sure. Think of, e.g., probe frames sent by mobile phones
of people walking around near our testbed. This means that
some samples may be affected by unexpected access delays.
For them, Tacc is not null and unknown. In order to prevent
these events from affecting statistics of SDMAC latencies,
such samples have to be identified and discarded. To this
purpose, a specific concurrent thread (network analyzer) was
run on the PC, which took a timestamp on every frame re-
ceived on air, with the exclusion of beacons and measurement
frames generated by the testbed. This was accomplished by
configuring the network interface in promiscuous mode and
using the libpcap library to detect any such frames.

Timestamps of unexpected interfering frames, the j-th of
which is denoted with tintj , were logged and used in the post
analysis phase to filter out samples possibly affected by access
delays. In particular, measured samples where timestamps t4

or t5 fell in any interval tintj ±10ms were discarded. It is worth
pointing out that only 0.1% of the samples were actually cast
away, which confirms the effectiveness of our technique.

V. RESULTS

Relevant settings for the experimental campaign are re-
ported in Table III. In particular, the bit rate was set to 54Mb/s
(fixed) to disable the rate adaptation algorithm, hence making
the quantities TDATA and TACK constant. Instead, the beacon
interval was shortened from the default value (102.4ms) to
51.2ms, to double the number of acquired samples. Unless
otherwise specified, the payload size of measurement frames
was set to 50B, which is realistic for process data in industrial
scenarios. Statistical indices on latency samples, which include
mean value (T), standard deviation (sT), minimum (Tmin),
maximum (Tmax), and the 99-, 99.9- and 99.99-percentiles
(Tp99, Tp99.9 and Tp99.99, respectively), were computed offline
from the timestamps acquired in the SDMAC testbed.

A. Interfering load
The first experimental campaign analyzes to which ex-

tent interfering tasks inside the PC affect SDMAC latencies.
Among the kinds of load considered in [6], we selected the
most aggressive one, that is I/O load: the dd Linux utility
was invoked to transfer, through the hard disk controller,
huge amounts of data on the system bus (∼80MB/s), which
sensibly increases interrupt generation rate (∼215 interrupts
per second). On the contrary, the no load condition refers
to an idle system, where only the tasks of a typical Linux
distribution (including the graphical user interface and the ssh
server daemon) and the measurement application are running.
Each experiment lasted one day (i.e., 1 728 000 samples), and
two configurations were analyzed, baseline and optimized.

TABLE IV
EXPERIMENTAL RESULTS FOR SUCCESSFUL FRAME TRANSMISSIONS
(STANDARD LINUX KERNEL WITHOUT AND WITH OPTIMIZATIONS).

T sT Tmin Tp99.9 Tp99.99 Tmax

Cond. Latency (µs)

B
a
se

li
n
e

N
o

lo
a
d Tsw req 2.676 0.361 1.745 6.274 11.720 36.519

Thw 20.171 0.472 18.130 21.313 21.543 22.978

Tsw con 21.421 2.102 19.338 27.438 30.986 59.321

TSDMAC 44.268 2.095 40.274 51.829 61.025 92.331

I/
O

lo
a
d Tsw req 6.034 3.158 1.527 21.215 32.441 91.535

Thw 19.940 0.612 17.878 22.133 23.012 61.665

Tsw con 21.657 2.581 18.593 50.698 76.128 373.083

TSDMAC 47.631 5.230 39.376 82.635 108.314 398.039

O
p
ti
m
iz
ed

N
o

lo
a
d Tsw req 1.733 0.171 1.470 3.067 7.531 16.972

Thw 19.888 0.467 17.920 21.076 21.427 44.773

Tsw con 19.545 0.443 18.564 22.849 31.383 40.592

TSDMAC 41.166 0.676 38.904 46.016 59.049 81.450

I/
O

lo
a
d Tsw req 4.178 2.014 1.557 13.487 20.306 32.148

Thw 19.904 0.610 17.813 22.271 23.206 53.511

Tsw con 22.431 2.235 18.449 36.047 50.947 63.792

TSDMAC 46.513 4.053 38.882 69.571 90.077 107.014

1) Baseline: Standard settings of the Linux distribution
were left unchanged, energy management and frequency scal-
ing were disabled [6], and the Linux kernel was optimized and
recompiled for Intel® i3 CPUs (Core 2/newer Xeon option in
Processor family kernel parameter). Experimental results for
this configuration are reported in the upper part of Table IV.

Regarding SDMAC overhead (TSDMAC), mean latency in no
load conditions is 44.268µs, while real-time statistical indices,
Tp99.99 and Tmax, are 61.025µs and 92.331µs, respectively.
All values are bounded and reasonably low. In presence of
I/O load, the average latency is similar, that is 47.631µs.
Unfortunately, Tp99.99 and Tmax grow to 108.314µs and
398.039µs, respectively. In this case, the 99.99-percentile is
more than twice the average value, and the maximum, as
expected, grew out of control. This is no surprise, because
SDMAC implementation is not hard real-time.

Considering the overall path of confirmed one-shot trans-
missions, the biggest contributions to the latency are due to
the software confirmation path (T sw con = 21.421µs) and the
hardware (Thw = 20.171µs), which are much higher than
the software request path (T sw req = 2.676µs). This is good
news because, from the application viewpoint, the ability of
a node to timely inject a frame on air is more important than
the notification latency of transmission outcomes. Think, e.g.,
to scheduled transmissions, including TDMA schemes.

2) Optimized: In this case, some strategies have been
devised and applied to increase determinism and reduce trans-
mission latencies. We only considered general optimization
strategies, which are not targeted to specific devices, brands,
or operating system releases. All the proposed settings can be
applied to conventional PCs and Wi-Fi adapters, on any multi-
core CPU running a mainstream Linux distribution. Although
we re-compiled the Linux kernel, performance only slightly
worsens if this part of optimization is skipped. Among a
relatively high number of strategies we tested, the following
ones have been selected.

As for the baseline configuration, the kernel was compiled
with the specific CPU optimizations, but disabling all ker-
nel debugging features. Regarding optimizations that do not

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Core 0

Core 2

Core 1

Core 3

Other

Interrupts

Other

Interrupts
Adapter

Adapter

Interrupt

Device Driver

Measurement Application

Linux & Tasks

Fig. 4. Isolation between the execution of SDMAC and other tasks.

require kernel re-compilation, we partitioned the execution
environment (i.e., CPU cores) so as to dedicate one core for the
execution of the “industrial” application (i.e., the measurement
application in the context of this paper), another for the driver,
and the remaining ones for the operating system and other
tasks (see Fig. 4). The CPU used in our testbed has two
physical cores and four logical cores. As logical cores are
not physically separate entities, results are sub-optimal. Our
proposed allocation schema can be enforced by setting the
default affinity of the operating system and all other tasks to
logical cores 0 and 2, which reside in the same physical core
(by running the kernel with boot parameter isolcpus=1,3).
Then, the affinity of the kernel thread that executes the device
driver was set to core 3 (with the taskset command), and
the priority of the driver was set to the highest-but-one real-
time priority with first in, first out scheduling policy (with
the chrt -f -p 98 <pid> command). To better isolate
tasks, we also modified interrupt affinity: all interrupts were
scheduled on cores 0 and 2, with the only exception of those
related to the Wi-Fi adapter, which were scheduled on core
3 (the same execution core as the device driver). Finally, the
measurement application was scheduled on the reserved core
1 by means of the taskset command.

Results for the optimized configuration are reported in the
lower part of Table IV. The most significant improvements
brought by optimizations regard real-time TSDMAC indices. In
particular, for the aggressive I/O load condition, Tp99.99 =
90.077µs and Tmax = 107.014µs. All other indices improve
as well, including minimum and average values. Effectiveness
of optimizations is also confirmed in no load conditions,
where determinism is remarkably better. For example, standard
deviation sT decreased from 2.095µs to 0.676µs.

B. Latency vs. packet size

This experiment was aimed at evaluating the effect of the
payload size on latency TSDMAC. In practice, the experiment
in no load conditions with the optimized configuration was
repeated for different payload sizes (from 50 to 1500B in
50B steps). Each experiment lasted 1 hour. In Fig. 5, statis-
tical indices of TSDMAC are plotted. The shape of curves is
piecewise linear. For frames up to ∼ 500B, dependence is
linear and TSDMAC increased by ∼ 1µs every 150B. When
payload size is larger than 500B, TSDMAC was stable and
practically stayed between Tmin ' 42µs and Tp99.9 ' 50µs
(as can be seen, the limited duration of experiments made, by
necessity, Tp99.99 not as reliable as other statistics).

Above behavior is due to the fact that, in order to start
transmission, the adapter does not wait for the whole packet
to be fetched in DMA from the PC main memory. Instead, it

just acquires a prefix of the packet in advance and loads the
remaining part while transmitting on air.

C. Latency vs. transmission outcome

The last experiment, carried out in typical, realistic oper-
ating conditions (no load, optimized configuration, 50B pay-
load), had two main purposes. Firstly, we wanted to analyze
SDMAC over a longer period of time, to assess its real-
time performance with higher confidence. For this reason, the
experiment lasted 7 days. Secondly, we wished to determine
dependence of timings on transmission outcomes. To this
purpose, we split acquired samples into three sets:

• A: DATA frame correctly delivered and acked;
• LD: DATA frame lost and consequently no ACK frame;
• LA: DATA frame correctly delivered but ACK frame lost.

A sample is assigned to set A when SDMAC_DATA_con()
notifies a successful transmission. Instead, when it returns
an ACKTimeout event, the frame is added to either set LA,
if correctly received by the recipient, or set LD otherwise.
To assign non-acked frames to sets LA and LD, sequence
numbers were included in the payload of measurement frames,
and a purposely-developed program was run on the recipient
side (a virtual AP running on a PC) to log sequence numbers of
received frames. Statistics were evaluated on both the overall
latency and individual contributions to the latency.

1) Acked frames: Results for acked frames in set A are
reported in the leftmost part of Table V. They confirm the
good real-time properties of SDMAC, even over wider time
spans. As can be seen, only 1 frame out of 10000 suffered
from an internal delay (due to SDMAC overhead) longer than
54.346µs (see Tp99.99 referred to TSDMAC), and the maximum
is bounded to a quite low value (Tmax = 77.512µs), despite
the system is not hard real-time.

When individual contributions to the SDMAC latency are
concerned, most of the time is spent in the Thw and Tsw con

components. In particular, the largest part of Tsw con was
caused by the ISR (T ISR

sw con) and the device dependent part
of the driver (TDRV dep

sw con), whose mean values were 11.911µs
and 6.364µs, respectively. This means that the time taken by
SDMAC to transfer the transmission outcome from the device
driver in kernel space to the application in user space (TAPI

sw con)
is negligible (1.368µs, on average). Therefore, optimizations
aimed at reducing such time further are practically worthless.

2) ACK timeout: Exact duration of frame transmission on
air depends on its outcome. In theory, the difference between

38

40

42

44

46

48

50

52

54

100 300 500 700 900 1100 1300 1500

TMin

T

Tp99

Tp99.9

Tp99.99

T
S
D

M
A
C

[µ
s]

Payload size [bytes]

Fig. 5. Statistical indices of SDMAC latency vs. payload size.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

TABLE V
EXPERIMENTAL RESULTS FOR SUCCESSFUL/FAILED TRANSMISSIONS (STANDARD LINUX KERNEL WITH OPTIMIZATIONS — ONE-WEEK RUN).

Acked frames (A set) DATA frame is lost (LD set) ACK frame is lost (LA set)

Number of samples |A| = 12091189 Number of samples |LD| = 529 Number of samples |LA| = 1938

T sT Tmin Tp99 Tp99.9 Tp99.99 Tmax T
∗

sT∗ T∗
min T∗

p99 T∗
max T

∗
sT∗ T∗

min T∗
p99 T∗

max

Latency (µs) (µs) (µs)

R
e
q
u
e
st

TAPI
sw req 0.886 0.105 0.652 1.104 1.959 3.054 9.914 0.876 0.088 0.722 1.115 1.268 0.884 0.107 0.711 1.104 2.254

TDRV ind
sw req 0.727 0.114 0.467 1.014 1.560 2.385 7.002 0.723 0.111 0.506 0.910 1.795 0.720 0.112 0.502 1.018 1.823

TDRV dep
sw req 0.797 0.082 0.598 0.974 1.749 2.735 5.968 0.799 0.099 0.647 1.010 2.025 0.794 0.081 0.647 0.977 2.367

Tsw req 2.410 0.248 1.786 2.897 3.797 7.923 21.967 2.398 0.235 1.940 2.899 3.819 2.398 0.244 1.913 2.920 6.007

H
w Thw 20.311 0.453 18.051 21.287 21.455 21.599 51.322 13.518 0.445 12.211 14.424 14.673 14.180 4.692 12.027 54.605 56.207

Thw + Ttoa 116.311 0.453 114.051 117.287 117.455 117.599 147.322 74.518 0.445 73.211 75.424 75.673 75.180 4.692 73.027 115.605 117.207

C
o
n
fi
rm

a
ti

o
n T ISR

sw con 11.911 0.236 11.118 12.321 12.520 13.635 23.597 11.882 0.212 11.626 12.341 13.315 11.890 0.213 11.604 12.325 13.173

TDRV dep
sw con 6.364 0.184 5.850 6.863 7.257 9.885 19.401 0.522 0.045 0.426 0.638 0.763 0.573 0.447 0.411 4.726 4.984

TDRV ind
sw con 0.119 0.049 0.050 0.334 0.428 0.464 1.498 0.092 0.033 0.045 0.171 0.188 0.092 0.032 0.045 0.170 0.299

TAPI
sw con 1.368 0.213 0.758 1.608 6.261 7.028 9.503 1.216 0.042 1.111 1.283 1.852 1.221 0.165 1.101 1.291 6.629

Tsw con 19.762 0.386 18.768 20.565 24.726 25.899 42.093 13.712 0.213 13.376 14.272 15.175 13.775 0.530 13.363 17.894 19.086

TSDMAC 42.483 0.662 39.268 43.943 47.534 54.346 77.512 29.628 0.528 28.157 30.894 31.585 30.353 5.125 27.858 75.011 77.050

Tpath 138.483 0.662 135.268 139.943 143.534 150.346 173.512 90.628 0.528 89.157 91.894 92.585 91.353 5.125 88.858 136.011 138.050

Statistics related to Tp99.9 and Tp99.99 were not reported for sets LD and LA because, due to the limited number of samples in such sets, they are mostly the same as Tmax.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 3 4 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

11 13 15 17 19 21 23

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

14 16 18 20 22

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

27 32 37 42 47

C
C
D
F
(T

)

Tsw req [µs]

Acked

Data frame lost

ACK frame lost

Thw [µs] Tsw con [µs] TSDMAC [µs]

Fig. 6. Complementary cumulative distribution functions of the different contributions to the SDMAC delay for sets A, LD , and LA.

durations of correctly performed and failed transmissions can
be evaluated from equations (4) and (6), using values in
Table III and setting TACKTimeout to the default value 50µs
reported in the IEEE 802.11 specification [1], i.e., Ttoa −
T ∗
toa = 10µs. The same difference is expected when consid-

ering the time elapsing between timestamps t4 and t5, which
corresponds to Thw +Ttoa and T ∗

hw +T ∗
toa values in Table V,

for acked and non-acked frames, respectively. By comparing
set A to set LD, one can see that the measured difference is,
on average, sensibly larger, i.e., 116.311−74.518 = 41.793µs.
Very similar differences can be obtained for 99-percentiles, for
which we have 117.287− 75.424 = 41.863µs.

The main reason of this discrepancy is that, the actual
ACKTimeout value set in the driver was lower than the default
IEEE 802.11 value. We verified that, for Wi-Fi adapters based
on the ath9k driver, TACKTimeout = 25µs. This is possibly
due to the fact that such adapters have a short transmission
range and are able to quickly detect the beginning of received
frames. For this reason, when computing the latency caused
by the hardware on non-acked frames, T ∗

hw = t5 − t4 − T ∗
toa ,

we set T ∗
toa = 61µs (while Ttoa = 96µs for acked ones).

From results in the table, the hardware appears to be slightly
faster when no ACKs were received, i.e., Thw − T ∗

hw ' 7µs.
Differences were slightly larger for the overall path, where,

on average, Tpath − T ∗
path = 138.483 − 90.628 = 47.855µs.

This is because the device-dependent code in the driver,
which manages confirmations, is also slightly faster in case
ACKTimeout expired. In particular, TDRV dep

sw con −T ∗DRV dep
sw con '

6µs. Above results imply that, upon detection of a transmis-
sion failure, the application in the originator was notified, on
average, ∼ 48µs in advance compared to successful trans-

missions. This behavior can be profitably exploited by real-
time applications running above SDMAC. In fact, whenever a
packet is lost, more time is given to the software to react
to the event. Such additional time can be used, e.g., to
execute complex scheduling algorithms or heuristics aimed at
counteracting the problem (e.g., by selecting another frame to
be transmitted, changing the transmission rate, and so on).

Latencies for frames belonging to set LA are similar, on
average, to those of set LD. Differences are described below.

3) DATA frame loss vs. ACK frame loss: Results for non-
acked frames are reported in the two rightmost parts in
Table V, for sets LD and LA, respectively. Statistics are,
on average, similar. In fact, from the point of view of the
originator, the loss of either a DATA frame or the related ACK
are almost indistinguishable, since both conditions are detected
following the lack of the ACK frame. The most significant
differences regard standard deviation, higher-order percentiles,
and maximum. In the case of set LD, when the DATA frame is
lost (because of either corruption or collision), the related ACK
frame is not returned by the recipient and, upon ACKTimeout
expiry, the originator detects that the transmission has failed.

Most of the transmissions in set LA experienced an ACK-
Timeout event, as for LD. According to the IEEE 802.11
specification, this occurs when ACK frame reception does not
start within TACKTimeout, e.g., because the PHY preamble is
corrupted. However, in a few cases the ACK frame did indeed
arrive to the originator, but it was corrupted. In such event,
the interrupt is raised by the Wi-Fi adapter after the ACK
frame has been completely read and the relevant frame check
sequence (FCS) verified. Hence, failure is notified later, more
or less at the same time as it would be in case of transmission

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

success (see, e.g., the worst-case latencies Tmax for A and LA,
which are similar). From the point of view of applications,
these events (which actually depend on what takes place on
air) can be suitably modeled as jitters introduced by SDMAC.
As a consequence, the distribution of latencies for LA becomes
bimodal, and higher-order percentiles and maximum are higher
than LD. For the same reason, standard deviation of LA is
noticeably larger than both A and LD.

4) Validation of results: Starting from the sample standard
deviation and the number of samples included in each set,
confidence intervals for mean values can be easily computed.
Concerning the mean latency T SDMAC, the confidence interval
for set A, which includes more than 12 million samples, is
42.483 ± 0.0004µs. Reliability for L sets is not as good. In
particular, for LD, which includes 529 samples, the confidence
interval is 29.628 ± 0.045µs, while for LA, which includes
1938 samples but is characterized by a noticeably larger
variance, it is 30.353 ± 0.228µs. Such intervals are narrow
enough for the purposes of our analysis.

In addition, the complementary cumulative distribution
functions (CCDFs) of the most important contributions to the
measured latency TSDMAC are reported in Fig. 6 for the three
sets of samples. They provide a further confirmation of actual
SDMAC determinism, and clearly highlight the differences
between latencies of set A and those of sets LD and LA.
In particular, the leftmost plot confirms that latencies in the
request path do not depend in any way on the transmission
outcome. Similarly, the slight difference between LD and
LA in the rightmost plot corroborates the hypothesis that the
probability density function for the latter is bimodal.

D. Applicability of SDMAC

Time-sensitive application scenarios listed in Section II-C
can be analyzed in the light of the above results.

1) Time Division Multiple Access: Safety margins width is
directly related to SDMAC determinism and synchronization
quality between clocks of nodes. As shown in Fig. 7, if only
jitters due to SDMAC were taken into account, the frame
release jitter on air would be Jmax = max(TSDMAC req) −
min(TSDMAC req). Since TSDMAC req is not made available
by our testbed, its upper bound T̂ = Tsw req + Thw can be
used, which realistically implies Jmax ≤ T̂max − T̂min.

DIFS

SIFS

SDMAC_DATA_req() SDMAC_DATA_con(+)

Node A
ACK

frame

h/w
s/w

TX
RX

Jitter

DIFS

SIFS

SDMAC_DATA_req() SDMAC_DATA_con(+)

ACK
frame

h/w
s/w

TX
RX

J.

Node B

Slot of Node A Slot of Node B

Margin
= Max.
Jitter

DATA frame

DATA frame

Margin
= Max.
Jitter

M
es

sa
ge

 A
Re

le
as

e
Ti

m
e

M
es

sa
ge

 B
Re

le
as

e
Ti

m
e

Fig. 7. Example of TDMA management using SDMAC.

In the following we refer to percentiles, as they are more
statistically reliable than worst-case values. From measured
delays in Table V for acked frames, a margin equal to T̂p99.9−
T̂min = (3.797 + 21.455) − (1.786 + 18.051) = 5.415µs is
large enough to guarantee that, reasonably, only one frame
out of 1000 falls out of time slot boundaries. Concerning
clock synchronization over Wi-Fi, the 99.9-percentile of the
measured synchronization error for an implementation based
on commercial PCs [14] is εp99.9 = 7.110µs, also including
scheduling jitters (which represent the main contribution to
uncertainties). As a very rough approximation, setting the
safety margin to 5.415+7.110 = 12.525µs should be enough
to ensure a similar probability that slot boundaries are not
exceeded at runtime.

2) Deadline-driven traffic scheduling: SDMAC overhead
is, on average, 42.483µs for successful transmission attempts
and ∼30µs for failed ones, which are comparable to the typ-
ical CSMA/CA timings (i.e., TDIFS = 34µs and Tslot = 9µs
when operating in the 5GHz band). Faster notification of
failures (compared to the latencies experienced for successful
attempts) and the ability to provide user space applications
with statistics about the quality of the communication channel
represent further advantages that justify SDMAC adoption in
these application contexts.

3) Seamless redundancy: Above considerations still apply,
as reasoning can be easily extended to cases where the same
packet is concurrently sent on multiple adapters.

4) Additional application contexts: SDMAC applicability
to other scenarios is part of our future work. Its extensive
performance characterization on a real prototype is, probably,
the most important milestone of this paper, and proves that a
variety of time-sensitive wireless systems can be implemented
with this paradigm.

VI. CONCLUSIONS

The SDMAC paradigm consists of a software overlay aimed
at providing researchers, developers, and final users with full
control on Wi-Fi adapters from user space applications. By
relying on few and well-defined modifications to drivers, it en-
ables effortless integration in existing commercial equipment,
simple updating to newer driver releases, and supports easy
customization to the features required by applications.

A number of guidelines are introduced and discussed in the
paper, aimed at optimizing SDMAC. Results obtained this way
are quite promising: for example, an experimental campaign
which lasted 7 days shows that latencies in our testbed, due
to the software and hardware components of SDMAC, are
bounded to reasonably low values, with statistically low jitters.
Despite the resulting system can not be considered hard real-
time, all measured values for the SDMAC delay ranged from
39µs to 77.5µs, and the 99.99-percentile is about 54µs.

The thorough performance evaluation we carried out evi-
dences that SDMAC behavior is deterministic enough to make
it an attractive enabling software component for many soft
real-time applications, not only in industrial contexts.

REFERENCES

[1] “IEEE Standard for Information technology–Telecommunications and
information exchange between systems Local and metropolitan area

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

networks–Specific requirements - Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications,” IEEE
Std 802.11-2016 (Rev. of IEEE Std 802.11-2012), pp. 1–3534, Dec 2016.

[2] C. Xu, W. Jin, G. Zhao, H. Tianfield, S. Yu, and Y. Qu, “A Novel
Multipath-Transmission Supported Software Defined Wireless Network
Architecture,” IEEE Access, vol. 5, pp. 2111–2125, 2017.

[3] A.-S. K. Pathan, Security of Self-Organizing Networks: MANET, WSN,
WMN, VANET, 1st ed. Boston, MA, USA: Auerbach Publications
(Taylor & Francis Group), 2010.

[4] A. Sharma, V. Gelara, S. R. Singh, T. Korakis, P. Liu, and S. Panwar,
“Implementation of a cooperative MAC protocol using a software
defined radio platform,” in IEEE Workshop on Local and Metropolitan
Area Networks (LANMAN), Sept 2008, pp. 96–101.

[5] K. Kang, Z. Zhu, D. Liu, W. Zhang, and H. Qian, “A software defined
open Wi-Fi platform,” China Commun., vol. 14, no. 7, pp. 1–15, 2017.

[6] G. Cena, S. Scanzio, and A. Valenzano, “A software-defined MAC
architecture for Wi-Fi operating in user space on conventional PCs,”
in IEEE Int. Workshop on Factory Communication Systems (WFCS),
May 2017, pp. 1–10.

[7] ——, “Seamless Link-Level Redundancy to Improve Reliability of
Industrial Wi-Fi Networks,” IEEE Trans. on Ind. Informat., vol. 12,
no. 2, pp. 608–620, April 2016.

[8] M. Cereia, I. C. Bertolotti, and S. Scanzio, “Performance of a Real-Time
EtherCAT Master Under Linux,” IEEE Tran. on Ind. Informat., vol. 7,
no. 4, pp. 679–687, Nov 2011.

[9] Y. H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“RT-WiFi: Real-Time High-Speed Communication Protocol for Wire-
less Cyber-Physical Control Applications,” in IEEE Real-Time Systems
Symposium (RTSS), Dec 2013, pp. 140–149.

[10] F. Santos, L. Almeida, and L. S. Lopes, “Self-configuration of an
adaptive TDMA wireless communication protocol for teams of mobile
robots,” in IEEE Int. Conf. on Emerging Technologies and Factory
Automation (ETFA), Sept 2008, pp. 1197–1204.

[11] A. Vesco and R. Scopigno, “Advances on Time-Division Unbalanced
Carrier Sense Multiple Access,” in Int. Conf. on Computer Communi-
cations and Networks (ICCCN), July 2011, pp. 1–6.

[12] V. Sevani, B. Raman, and P. Joshi, “Implementation-Based Evaluation
of a Full-Fledged Multihop TDMA-MAC for WiFi Mesh Networks,”
IEEE Trans. Mobile Comput., vol. 13, no. 2, pp. 392–406, Feb 2014.

[13] A. Mahmood, R. Exel, H. Trsek, and T. Sauter, “Clock Synchronization
Over IEEE 802.11 - A Survey of Methodologies and Protocols,” IEEE
Trans. on Ind. Informat., vol. 13, no. 2, pp. 907–922, April 2017.

[14] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Implementation and
Evaluation of the Reference Broadcast Infrastructure Synchronization
Protocol,” IEEE Trans. Ind. Informat., vol. 11, no. 3, pp. 801–811, 2015.

[15] L. Seno, G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Enhancing
Communication Determinism in Wi-Fi Networks for Soft Real-Time
Industrial Applications,” IEEE Tran. on Ind. Informat., vol. 13, no. 2,
pp. 866–876, April 2017.

[16] G. Patti, G. Alderisi, and L. L. Bello, “SchedWiFi: An innovative
approach to support scheduled traffic in ad-hoc industrial IEEE 802.11
networks,” in IEEE Int. Conf. on Emerging Technologies Factory Au-
tomation (ETFA), Sept 2015, pp. 1–9.

[17] G. Cena, S. Scanzio, and A. Valenzano, “Experimental Evaluation of
Seamless Redundancy Applied to Industrial Wi-Fi Networks,” IEEE
Tran. on Ind. Informat., vol. 13, no. 2, pp. 856–865, April 2017.

[18] ——, “A Prototype Implementation of Wi-Fi Seamless Redundancy
with Reactive Duplication Avoidance,” in IEEE Int. Conf. on Emerging
Technologies and Factory Automation (ETFA), Sept 2018, pp. 179–186.

[19] D. Xia, J. Hart, and Q. Fu, “Evaluation of the Minstrel rate adaptation
algorithm in IEEE 802.11g WLANs,” in IEEE Int. Conf. on Communi-
cations (ICC), June 2013, pp. 2223–2228.

[20] F. Tramarin, S. Vitturi, and M. Luvisotto, “A Dynamic Rate Selection
Algorithm for IEEE 802.11 Industrial Wireless LAN,” IEEE Trans. on
Ind. Informat., vol. 13, no. 2, pp. 846–855, April 2017.

[21] A. Mahmood, R. Exel, and T. Sauter, “Delay and Jitter Characterization
for Software-Based Clock Synchronization Over WLAN Using PTP,”
IEEE Trans. on Ind. Informat., vol. 10, no. 2, pp. 1198–1206, 2014.

[22] M. Cereia and S. Scanzio, “A user space EtherCAT master architecture
for hard real-time control systems,” in IEEE Int. Conf. on Emerging
Technologies Factory Automation (ETFA), Sept 2012, pp. 1–8.

[23] H. Trsek, S. Schwalowsky, B. Czybik, and J. Jasperneite, “Implemen-
tation of an advanced IEEE 802.11 WLAN AP for real-time wireless
communications,” in IEEE Int. Conf. on Emerging Technologies and
Factory Automation (ETFA), Sept 2011, pp. 1–4.

[24] A. Hoban, “Designing real-time solutions on embedded Intel architecture
processors,” Intel Technology Journal, vol. 16, no. 1, pp. 100–113, 2012.

Gianluca Cena (SM’09) received the Laurea degree
in electronic engineering and the Ph.D. degree in in-
formation and system engineering from the Politec-
nico di Torino, Italy, in 1991 and 1996, respectively.
Since 2005 he has been a Director of Research with
the Institute of Electronics, Computer and Telecom-
munication Engineering, National Research Council
of Italy (CNR–IEIIT), Torino.

His research interests include wired and wireless
industrial communication systems, real-time proto-
cols, and automotive networks. In these areas he has

coauthored about 130 technical papers, three of which awarded as Best Papers
of the 2004, 2010, and 2017 editions of the IEEE Workshop on Factory
Communication Systems, and one as 2017 Best Paper for the IEEE TRANS-
ACTIONS ON INDUSTRIAL INFORMATICS, plus one international patent.

Dr. Cena served as a Program Co-Chairman for the 2006 and 2008 editions
of the IEEE International Workshop on Factory Communication Systems, and
as a Track Co-Chairman in six editions of the IEEE International Conference
on Emerging Technologies and Factory Automation. Since 2009 he has
been an Associate Editor of the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS.

Stefano Scanzio (S’06-M’12) received the Lau-
rea and Ph.D. degrees in Computer Science from
Politecnico di Torino, Torino, Italy, in 2004 and
2008, respectively. He was with the Department of
Computer Engineering, Politecnico di Torino, from
2004 to 2009, where he was involved in research
on speech recognition and, in particular, he has
been active in classification methods and algorithms.
Since 2009, he has been with the National Research
Council of Italy (CNR), where he is a tenured Re-
searcher with the Institute of Electronics, Computer

and Telecommunication Engineering (IEIIT), Torino.
Dr. Scanzio served as a Work-in-Progress Co-Chairs in the 2018 edition

of the IEEE International Workshop on Factory Communication Systems
(WFCS 2018). He teaches several courses on Computer Science at Politecnico
di Torino. He has authored and co-authored of more than 50 papers in
international journals and conferences, in the area of industrial communication
systems, real-time networks, wireless networks and clock synchronization
protocols. He received the award for the best paper published in the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS during 2016, and the Best
Paper Awards for the papers he presented at the 8th and 13th IEEE Workshops
on Factory Communication Systems (WFCS 2010 and WFCS 2017).

Adriano Valenzano (SM’09) received the Laurea
degree magna cum laude in electronic engineering
from Politecnico di Torino, Torino, Italy, in 1980. He
is Director of Research with the National Research
Council of Italy (CNR). He is currently with the
Institute of Electronics, Computer and Telecommu-
nication Engineering (IEIIT), Torino, Italy, where
he is responsible for research concerning distributed
computer systems, local area networks, and commu-
nication protocols. He has coauthored approximately
200 refereed journal and conference papers in the

area of computer engineering.
Dr. Valenzano is the recipient of the 2013 IEEE IES and ABB Lifetime

Contribution to Factory Automation Award. He was also awarded for the best
paper published in the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
during 2016, and received the Best Paper Awards for the papers presented at
the 5th, 8th and 13th IEEE Workshops on Factory Communication Systems
(WFCS 2004, WFCS 2010 and WFCS 2017).

Adriano Valenzano has served as a technical referee for several international
journals and conferences, also taking part in the program committees of
international events of primary importance. Since 2007, he has been serving
as an Associate Editor for the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TII.2018.2873205

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

